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CALCULATION OF SKIN-STIFFENER INTERFACE
STRESSES IN STIFFENED COMPOSITE PANELS

(ABSTRACT)

A method for computing the skin-stiffener interface stresses in stiffened composite panels
is developed. Both geometrically linear and nonlinear analyses are considered. Particular
attention is given to the flange termination region where stresses are expected to exhibit un-
bounded characteristics. The method is based on a finite-element analysis and an elasticity
solution. The finite-element analysis is standard, while the elasticity solution is based on an
eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be
valid in the local flange termination region and is coupled with the finite-element analysis
using collocation of stresses on the local region boundaries. In the first part of the investi-
gation the accuracy and convergence of the local elasticity solution are assessed using a
geometrically linear analysis. It is found that the finite-element/local elasticity solution scheme
produces a very accurate interface stress representation in the local flange termination re-
gion. The use of 10 to 15 eigenvalues, in the eigenvalue expansion series, and 100 collocation
points results in a converged local elasticity solution. In the second part of the investigation,
the local elasticity solution is extended to include geometric nonlinearities. Using this analysis
procedure, the influence of geometric nonlinearities on skin-stiffener interface stresses is
evaluated. 1t is found that in flexible stiffened skin structures, which exhibit out-of-plane de-
formation on the order of 2 to 4 times the skin thickness, inclusion of geometrically nonlinear
effects in the calculation of interface stresses is very important. Thus, the use of a geomet-
rically linear analysis, rather than a nonlinear analysis, can lead to considerable error in the
computation of the interface stresses. Finally, using the analytical tool developed in this in-
vestigation, it is possible to study the influence of stiffener parameters on the state of interface

stresses.
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1. Introduction

In recent years there has been a dramatic increase in the use of composite materials in
aircraft structures. Compared to metallic structures, the cost benefits, performance increase,
and weight reductions which can be realized are substantial. As with metallic structures, one
of the primary components in aircraft structures is the skin-stiffener combination. in traditional
metallic structures the stiffener is attached to the skin by rivets. In severe loading conditions,
such as those that occur during postbuckling, the rivets provide a site for yielding of the metal.
As a result, failure in the form of local yielding may occur but the failure does not necessarily
cripple the structure as a whole. On the other hand, composite materiais are brittle and do
not yield. Holes and other geometric discontinuities are sites for high stresses that ultimately
cause the failure of the structure as a whole. Therefore, the use of rivets as the method of
stiffener attachment is less attractive with composites than it has been with metals. A more
common method of stiffener-to-skin attachment in composite structures is by an adhesive

secondary bonding or by the cocuring of the stiffener and skin.

Because of the differences in material properties and the lack of riveting, the failure char-
acteristics observed with bonded or cocured stiffened composite skins are quite different from
the failures encountered in riveted metallic structures. Failure in stiffened composite skins

occurs in a much more catastrophic manner, being initiated by skin-stiffener separation [1].
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Further, it has been shown [2] that stiffened composite panels can fail prematurely, below the
design load, due to skin-stiffener separation. One such mode of failure has been observed to
initiate at the flange termination region. Figure 1 illustrates an example of this type of failure.
Because of observations such as shown in Figure 1, it is believed that the stresses in the
flange termination region are high. High skin-stiffener interface stresses can be attributed to
a number of factors. First, there is the structural incompatibility associated with the deforma-
tion of the skin and deformation of the stiffener when the skin-stiffener combination is sub-
jected to applied loads. This incompatibility is particularly acute in the postbuckling state. In
addition, if the stiffener is bonded to the skin, the flange termination region leads to a ge-
ometric discontinuity in the structure. This region tends to serve as an area of increased
stress. Finally, in stiffened composite skins the problem is compounded by an additional
complication. In order to gain full advantage of the tailoribility of composite materials, gener-
ally the stiffener and the skin are constructed of different material layups. Such material dis-
continuity at the interface can lead to significant skin-stiffener interface stresses. It is the
primary purpose of the present study to develop a method by which the stresses in this region
can be accurately determined, and to use the method to investigate the influence of various
stiffener parameters on the stresses in this region. Though the flange termination region is

of primary concern, stresses at all locations along the interface are computed.

To predict the skin-stiffener interface stresses, different levels of analytic complexity can
be used. However, it is generally acknowledged that the analytical modei should incorporate
a few key features. First, the model should accurately represent the geometric and material
discontinuities associated with the flange termination. As with free edge stresses, these ge-
ometric and material discontinuities can cause the stresses in the flange termination region
to be unbounded. When present, these unbounded stresses can be responsible for the initi-
ation of skin-stiffener separation and should be accounted for. Secondly, since stiffened panels
are most commonly designed to operate at the postbuckling range, the analysis must incor-

porate geometrically nonlinear effects. Third, for the analytic tool to be useful in the design

1. Introduction 2
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process, it must be sensitive enough to various design parameters, e.g., stiffener geometry
and skin/stiffener materiai architecture. In addition to these three key factors, there is the is-
sue of computational efficiency or cost. The computational cost should not be so large as to
prohibit its use as a tool for parametric studies or for the design of a stiffened structure. And
finally, the analysis should be such that it can be integrated into any proposed computational

schemes or testbeds [3,4].

Considering the severity of the problem, there have been few studies of skin-stiffener
interface stresses. One of the more notable ones is discussed in [5). In this investigation the
skin and flange were treated as separate orthotropic plate elements. These elements were
held together via interface forces, the forces being taken as unknowns. The stiffness of the
other stiffener elements, such as the web and the cap, were treated as extensional and rota-
tional springs. The solution to the problem was formulated using the principle of virtual work
and the theorem of minimum potential energy. Although in the postbuckling range the skin
will actually experience moderate to large rotations, the analysis assumed only geometric
linear deformation theory. Other studies [6-9] have considered similar problems, namely the
adhesively bonded lap joints. In these studies the two adherents were treated as plates under
cylindrical bending and/or inplane loads. In [6-8] the adhesive was modeled as shear spring
only or tension-shear spring combination, and in {9] it was treated as an elastic layer in which
the stresses did not vary across the adhesive thickness. In all of these studies a solution for
the variation of shearing and peeling stresses in the adhesive was obtained. In [9] the derived
solution was also applied to a simplified stiffened composite plate geometry. These investi-
gations looked at simplified geometries and loading conditions. Hence, although these studies
are important in furthering the understanding of adhesively bonded components, they cannot
be applied in their present form to the study of stiffened composite aircraft structures. This is
due to the fact that such structures tend to have complex geometries and loading conditions.

In addition, the above studies did not address the issue of geometric nonlinearities.

1. Introduction 4



Due to the problems in the previous analytical models discussed above, a more detailed
analysis was undertaken. As stated above, and reiterated here, the following key require-
ments were imposed: a) The model should accurately represent the state of stress near the
point of geometric and material discontinuity; b) The model should be applicable to the ge-
ometric nonlinear range; and c) The model should be sensitive in its stress prediction to var-
ious design parameters, such as stiffener geometry and stiffener/skin material architecture.
To meet these requirements, an analysis is developed in which the stress predictions are
based on a generalized plane deformation elasticity solution in combination with standard
finite-element calculations. The elasticity solution is valid in the localized region near the ter-
mination of the stiffener flange. The finite-element calculations are valid for the structure as
a whole, except near the flange termination region. The elasticity solution uses an eigenvalue
expansion of the stress function to predict the stresses. The expansion is applicable in the
flange termination region and satisfies exactly the boundary conditions there. The eigenvalue
expansion is known to within arbitrary, but unknown, coefficients which are associated with
each eigenvalue. The stresses from the finite-element solution and collocation scheme are
used for determining the constants and thus uniquely determining the stresses in the localized

region.

In the next chapters various aspects of the investigation will be discussed. In chapter 2 the
development of the analytical method and its verification are delineated. The derivations in
this chapter are for geometrically linear analysis only. In chapter 3 it is shown how the meth-
odology developed in chapter 2 may be extended to include geometric nonlinearities (i.e.,
moderate rotations). This is followed by a discussion of the application of this extension to the
study of interface stresses in stiffened composite plates. In chapter 4, numerical results are
presented. These results highlight the effect of including geometric nonlinearities in the
analysis on skin-stiffener interface stresses. In addition, the effect of various stiffener ge-
ometric and material parameters are evaluated. The study ends with some concluding re-

marks and recommendations for future research.
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2. Analytical Method Development

2.1 Analysis Overview and Relevant Literature

To facilitate the following discussion, a skin-stiffener cross-section being studied is shown
in Figure 2. Note the location of the coordinate system in the figure and the nomenclature
associated with the cross-section. Several coordinate systems will be used hereafter and it
will be important to differentiate between them. Interest focuses on the computation of inter-
face stresses at the skin-stiffener interface, along the line y=0. The type of stiffener shown,
a blade stiffener, is only to serve as an example. Other stiffener types such as hat, |, and J
can be studied with the type of analysis being developed. It should be noted that the flange
can terminate at various angles, a, (see Figure 2), relative to the skin. The shaded area,
shown in the exploded view, is referred to as the local region. This is the region where the
elasticity solution is valid. The region outside of the shaded area, referred to as the global
region, is the region where the finite-element solution is valid. it will be assumed that
Figure 2 represents a cross-section of a stiffened panel that is long enough that the stress
state does not vary in the stiffener direction in the region of interest. That is, in the nomen-

clature of the figure, the stresses do not vary with the z coordinate.
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A linear analysis of the local region, as depicted in Figure 3, consists of finding the solution
to the equations of elasticity valid in a region enclosed by an arbitrary corner opening created
by two dissimilar orthotropic materials bonded along y =0, and subjected to known boundary
conditions. The literature regarding this problem is extensive and no attempt is made to cover
all of it, instead some of the more important studies directly relevant to our investigation will
be discussed. Williams [11]} was the first to investigate the solution to an arbitrary corner in
an isotropic plate in the form of an eigenfunction expansion. His solution was used extensively
by Gross et al [12-16] in the numerical computations of stress intensity factors of various
fracture toughness specimens. Carpenter [17] used Muskhelishvili’s [18] complex potential
approach to solve the same problem. He applied his solution to the investigation of interface
stresses in lap joints. Williams, in a later paper [19], extended his solution to wedges
composed of two dissimilar isotropic materials. Bogy [20] solved the same problem using
Mellin transforms and obtained similar results. The extension of the above problem to wedges
composed of two dissimilar anisotropic materials was first conducted by Wang and Choi [21].
In their work they used the complex eigenfunction expansion of the Lekhnitskii [22] stress
functions. Later they applied their solution to laminate free-edge problems [23] and compoéite
lap joints [24]. Other investigators solved the same problem using slightly different ap-
proaches. Delale [25] transformed Lekhnitskii stress functions into polar coordinates and used
a polar eigenfunction expansion, in real variables, to solve the problem. Ting and Chou [26]
and Bogy [27] used the Green and Zerna complex function representation to solve the same

problems.

In the present study the solution method outlined by Lekhnitskii [22] and the specific
eigenfunction expansion solution proposed by Wang and Choi [21] is employed. Inherent in
this solution method is the need to determine a set of coefficients, one coefficient being as-
sociated with each eigenfunction, from the boundary conditions. Among the many methods
available by which the unknown coefficients may be determined, a collocation technique was

chosen here. The method involves the use of n boundary conditions, of known magnitude,

2. Analytical Method Development 8
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matched along prescribed boundaries with the same boundary quantities written in terms of
the unknown coefficients. This leads to a system of n simultaneous equations from which the
n unknown coefficients can be determined. The above procedure is sometime referred to as
the point-matching method. Since there is no rigorous proof for convergence of the cotlocation
method, it is typically studied by increasing the number of terms in the assumed function and
the number of boundary collocation points. To increase accuracy and decrease dependency
in the manner in which the positions of the collocation points are chosen, it is common prac-
tice to use more boundary collocation points than unknown coefficients [28,29]. This approach
is known as the overdetermined collocation procedure. Since it leads to an overdetermined
set of equations by which the unknown coefficients are evaluated, the coefficients are deter-
mined in a least-squares sense. Once it is clear that the number of terms in the assumed
function and the number and location of the known boundary points have little influence on the
numerical results, it is assumed that the procedure has converged. The converged functions

are then assumed to be close to a true representation of the exact solution within this region.

A number of investigators have made extensive use of the above described coliocation
procedure. Gross et al [12-16] used boundary collocation in the determination of K, for various
edge crack specimen geometries. In their investigation the first coefficient (which is related
to K)) of the Williams stress function, x, was determined by collocating boundary vales of y
and % (n being the normal to the boundary) along prescribed boundaries. Carpenter [28]
applied boundary collocation in the determination of various fracture parameters. The un-
known coefficients of the truncated function expansion were evaluated from the collocation
of all three stress components ( o,, ¢, and 1,) obtained from finite-element analysis. In an-
other paper [30] Carpenter investigated accuracy issues related to the boundary collocation
of stresses and/or displacements. Wang and Choi [23] used collocation to study the laminate

free-edge problem.

Other procedures which involve the use of eigenfunction expansion of the stress function

in a localized region include the reciprocal work contour integral (RWCI) method, and the use
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of special singular elements. The RWCI is based on Betti’s theorem of elastic bodies. Two
sets of forces (S; and §;) and displacements (u; and u’; ) of the same direction but not the
same magnitude acting at selected points along the body boundary are in reciprocal equilib-
rium. Use of the theorem provides a scheme by which the boundary value problem discussed
previously may be solved. In addition, the RWCI leads to a path-independent procedure. The
above technique have been used in the computation of K, and/or K, by Carpenter [17] and
Sinclair et al [31]. in the singular or hybrid element formulation, a special element is devel-
oped which comprises a portion of the localized region where geometric and material dis-
continuities occur. The displacements and stresses within the element boundary are
governed by the exact elasticity solution. The surrounding standard elements of the mesh are
then connected at n nodal points along the boundary of the special element. The coefficients
of the truncated stress function are then determined so as to render continuity (or compat-
ibility) of the nodal displacements at the special element’s boundary in an exact or approxi-
mate manner. There are numerous studies which have utilized the above concept. Some of

the more relevant ones include work by Wang and Yuan [32] and Jones and Callinan [33].

Clearly, the issue here is determining the conditions on the boundary of the local region.
In general, it is not important how the boundary conditions are obtained, as long as the in-
formation is accurate. For complex geometries, such as the skin-stiffener cross-section, the
only reasonable method to obtain boundary conditions is with finite-element analysis. Thus the
method here will utilized a finite-element analysis of the cross-section to provide stress in-
formation on the boundary of the localized region. Furthermore, the finite-element analysis of
the cross-section itself will be coupled to a finite-element analysis of the entire plate. The total
analysis will be of the form of a structure-substructure-local analysis. The remainder of this
chapter will be devoted to the local analysis. The governing equations of elasticity, the
eigenvalue expansion solution, and the application of the collocation procedure will be pre-
sented. In addition, the accuracy and convergence of the method are discussed by application

to specific problems.
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2.2 Material model

The analysis here is implemented on the laminate rather than a lamina level. That is, the
skin and stiffener are treated as having homogeneous integrated material properties. The
reason behind this is as follows: It is felt that the interaction between the skin and the stiffener
are controlled more by the overall stiffnesses of the skin and the stiffener than by the stiffness
of the individual lamina at the skin-stiffener interface. For this reason the integrated material
properties are used in the present analysis. Furthermore, only symmetric balance laminates
are considered. in obtaining integrated material properties, the lamina principal material co-
ordinates, denoted as the 1-2-3 coordinates, correspond to the transverse, thickness, and fiber
directions, respectively. The x-y-z coordinates correspond to directions transverse, normal,
and colinear to the stiffener, respectively (see Figure 2). The fiber angle, ¢ , measures the
angle between the 3 and z axis, a positive rotation corresponding to rotation of the fiber from

the z axis toward the x axis.

The well known laminate constitutive relations in the 1-2-3 system are written symbolically

as,

G = S8 . [1]

€, and O, being the strain and stress vectors in the 1-2-3 system and S being the compliance
matrix in the same system. The transformation of stress and strain from the 1-2-3 system to

the x-y-z system leads to,

— —

01 = T1 GX . [23]

gy = Trg, , [2.b]
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where T, and T, are the transformation matrices for stress and strain respectively. For a dis-
cussion of these transformations see Appendix A. Substitution of egs. 2 into eq. 1 leads to the

lamina constitutive relations in the x-y-z system, namely;
Ex = S 0y . [3.a]

where,

S11S12 813 0 Sy5 O
S8 853 0 Syp5 0
_ . S31535 S33 0 S35 0
[s1 = 1,'(slT, = _ 3 , [3.b]
0 0 0 5, 0 S,
Ss51Ssp Ss3 0 Ss5 O

0 0 0 Sz O Sg

L .

and §,, = 'S_i,. In inverted form eq. 3.a is written as,
Gy = Cey . (4]

The integrated laminate properties are obtained by smearing the individua! lamina properties
throughout the thickness of the laminate. This is achieved by defining an average stress
through the laminate thickness, h, i.e,,

2 _ 1 h o

5% = + o, dy . [5]

—1/h

Substitution of eq. 4 into eq. 5 leads to the laminate constitutive relations:
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Ox Ay Ay Ay 0 0 0 1 Ex
oy A Ay Ay O 0 0 €y
o, _ Aiz Ay Az 0 0 0 € | [6.2]
tye 0 0 0 Ay 0 0|\
Tyz 0 0 0 0 Az O Yz
Ty 0 0 0 0 0 Agl|f 1y
L .

where the overbar is dropped from the stresses for convenience. The laminate stiffness

components A; are given by,

Aij =

1tV

1 —
— Ci (Y — Ye—=1) . [6.b]
h k=1 ij K Kk 1)

n being the number of laminae and y, and y,_, being defined as the through-the-thickness lo-

cations of the laminae interfaces. In inverted form;
5 = [al3, . (7]

It should be noted that although each lamina is considered to be anisotropic in the x-y-z sys-
tem, the laminate constitutive law is that of an orthotropic material, i.e., the smeared laminate

properties are orthotropic.

2.3 Elasticity Solution

As mentioned at the outset, the analysis will be developed for the linear case and then
extended to the geometrically nonlinear analysis case. What follows is the linear analysis

development.

2. Analytical Method Development 14



2.3.1 Development of the Stress Functions

Consider an arbitrary semi-infinite corner composed of two dissimilar orthotropic materials

bonded along y=0 (or 6 = 0), as depicted in Figure 3. If the body in question obeys the fol-

lowing restrictions: a) The dimension in the z direction is much larger than the cross-sectional

dimensions; and b) The external loads on the lateral surface do not vary with z, it is possible

that the stresses, and hence the strains, are independent of the z-coordinate. Such a condi-

tion is referred to as a generalized plane deformation. The ends of the body may be subjected

to axial force, P,, twist M,;, and moments, both about the x and y axes (i.e., M, and M,). If such

end loads are present, the state of plane deformation will exist at some distance from the ends

in a manner consistent with St. Vernant’s principle. Under the above conditions the stress

equilibrium equations become,

60’x a‘txy
ax ay
Otyy do,
Ox ay
Otxz Oy,
0x ay

The strain-displacement relations are given by,

_ 0

U v Tyz
— Ov

gy = a—y, Yxz
—  aw

.2 T oz ' Txy
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ow
oy

oW
0x

du
oy

N
oz ’

Ou
oz '

v
ox '

[8.a]

[8.b]

[8.c]

[9.a,b]

[9.c.d]

[9.e,]
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where the strains are a function of x and y only. The constitutive relations of eq. 7 for a

homogenous orthotropic body under consideration can be written in full as,

€y a4 aqp a43 0 O 01 Oy
Ey 840 @y a3 0 0 O Oy
8z \_ | %3333 0 0 0 0 [10]
Yyz 0 0 0 a, 0 O Tyz
Yz 0 0 0 0 as O Tz
Yxy 0 0 0 0 0 ag Tyy

The general expressions for the displacement functions are obtained by a series of inte-
grations and differentiations of eqs. 8, 9, and 10. The step-by-step details are given in [22].
In general, the constitutive relations are written in terms of the displacements using eqgs. 9.
The integration of three of these equations, (keeping in mind that 6, is independent of z) and

the satisfaction of the remaining three equations leads to the displacement functions in the

general form,

B,a
u = ——42——3322 — Bgyz + Uxy) + w2 = w3y + ug [11.a]
v= 2238 2, 8.0y + - + [11.b]
5 AXZ (x.y) W3 X Wy Z Vo .

w = (Byx + B,y + B;) a5z + W(xy)
+ ooy — @x +ow, [11.c]

where B;, (i = 1,23,4), are arbitrary constants of integration, ®,, (i = 1,2,3) are rigid
body rotations, and u,, v, and w, are rigid body translations. The unknown functions U(x.y),

V(x.y) and W(x,y) must satisfy the following conditions:
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o _

o = BiyOx + B1p0y + aa(Byx + Bpy + Bg), [12.a]
g_\; = Byox + BpO, + ap(Bix + Byy + By), [12.6]
_‘;L;’- 2 = Beryy [12.]
-@‘% = PBes Ty * Bay . [12.4]
%W;. = Bus Tyz — Bax . [12.e]

where B are the reduced stiffness coefficients and are given by,

aj3 A3

s ¢ M=12456 . [13]

By = 3

The compatibility equations are satisfied identically for the above displacement field since it

is derived from the strain-displacement relations. In addition it can be shown [22] that,
62 = B1 X + Bz y + 83 - '5‘1:;‘3"(313 O'X + 323 O'y) . [14]

The stresses which satisfy all the aforementioned assumptions can be derived from two stress

functions, F(x,y) and ¥(x,y) . If the stresses are written in terms of these functions as,

&F 6°F &F
(o) D (o = —, T = - ) [15.a,b.C]
X ay* Y ox? Xy axay
a2 2
i 4 i 4
T, = oY . = 21 [15.d.e]
v a2 oy
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then the stress equilibrium eqgs. 8.a through 8.c are satisfied identically. The equations gov-
erning F(x,y} and ¥(xy) are obtained by substitution of the above stress relations into eqgs.

12.a through 12.e and the elimination of U, V, and W by differentiation. For an orthotropic

material these equations become,

&F &F a*F
£ 2B1s + Bgg)—2— + L = o, [16.a]
B2z d (2P42 B66)6x26y2 By o
ik S i 4
Ll L= = - 2B, . [16.b]
Pt Pss o2 )

The decoupling of the two equations is a distinct characteristic of orthotropic materials (i.e.,
the equations are not uncoupled for anisotropic material). The equation governing F is ho-
mogeneous while the equation for ¥ involves a particular solution. The solution for F and the

homogeneous equation for ¥ have the form [22],

F = F(x + py), [17.a]

¥

Y(x + vy), [17.0]

where p and v are parameters to be determined. For the local region near the vertex of the

bimaterial corner the solutions for F(x,y) and ¥(x,y) are approximated in [21] as,

zk+2
F(zy = TR (18.a]
¥(@2) o%fg% : [18.b]
where,
Z = x + py , [19.a]
Z = x + vy | (19.b]
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and C and D are arbitrary constants. The substitution of F(x,y) and ¥ (x,y) into egs. 16.a and

16.b teads to,

CAM=1Z"2[Bp + (2B + Beg) ¥ + Byyu*l = 0 , [20a]

D525 (B + Bss V2) = O . [20.b]

The first equation is satisfied under the following conditions:

a) p has one of four unique values given by the characteristic equation
B + (2Bg2 + PBeg) W¥ + Byyp* = 0. [21]

Such roots do exist and they are always complex or imaginary (for detailed discussion see ref.

22). Considering these four values of i, F(x,y) is given by,

o 4 Zﬁ”
e e )
b) u is arbitrary and,
A = 0,1
This leads to
F(a)(x,y) = b1x3 + b2x2y + b3xy2 + b4y3
+ b5x2 + bgxy + b7y2 . [23]

The superscripts (€) and (a) designates the eigenvalue expansion and auxiliary solutions,

respectively.

The second of eq. 20 is satisfied under the conditions:

a) v has one of two unique values given by the characteristic equation,
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Bas + Vi PBss = O. [24.a]

This leads to,

v, = & i\/ﬁ“— , [24.0]
' Bss

from which ¥(x,y) becomes,

o ) ZE+1
Y (xy) = k§1 Dy —(-S'Tj{)— [25]
b) v has an arbitrary value and,
o = 0 ,
leading to,
¥ @ (xy) = bgx + bgy . [26]
Finally the particular solution of eq 16.b is taken as,

YP (xy) = by + byy® . [27.a]
in the above the C, and D, are arbitrary complex constants and b,, i = 1,...,9 are arbitrary real
constants. The constants b,; and b,, are not completely arbitrary, namely

Pagbro + Pssbyy = — 2B . (27.b]

In addition, A and 6 are unknown parameters at this point. The total solution for the two stress

functions is then written as the sum of the component solutions, i.e.,
Fxy) = Fuxy) + F@xy) | [28.a]
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Yixy) = ¥y + ¥xy) + ¥P(xy)

2.3.2 Expressions for the Stresses and Displacements

The Cartesian components of stress are derived from egs. 15.a through 15.e as,

4
o = % catd + o

Q
I

4
> Czk + o,
k=1

Y
= - ¥ Ao, @
Txy - z Ck Mg Zk txy ’
k=1
- - 2 p A 4+ L@
Tyz = 2 Dy Tyz >
k=1
= 3 I )
Ty = k§1 Dy vy Z Tz

where the auxiliary stresses are given by:

o = 2bgx + 6b,y + 2b; ,
ol = 6byx + 2b,y + 2bs ,
@) = - 2b,x - 2byy - bg,
) = — by — 2bypx

"g) = by + 2byy
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[28.b]

[29.a]

[29.b]

[29.c]

[29.d]

[29.e]

[30.a]

[30.b]

[30.c]

[30.d]

[30.e]
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It turns out that it is more convenient to impose conditions on the boundary of the localized

region using the polar cylindrical stresses. Using the cylindrical coordinates r — 6 — z (Fig-

ure 3), the stress components become,

Or

Og

Tre

20

where,

csa)

o)

4

Gt

@

4
= k§1 Ckr)‘(mpk - n)z(m + n|,1k)7L + cf,a)
4
= T rfm + a)*? o+ of
K=1
- A (A+1)
= k§1 Cerimpy, — nm(m + ny) +
2 5 (5+1) (a)
= - 2 Dkr (m + nUk) + 120
k=1
2
= 3 Dkrs(muk - nj{m + nok)8 + 43)
K=1
= m?el® + 2mn< + n?ol® |
= n?ol® - 2mnt§;) + mzoff) .
= nm(og,a) - ¥ + m* - 0 r§g) ,

= mtg) + ntgaz’

withm = cosOand n = sin0.

L]

(a)

Tre

[31.a]

[31.b]

[31.c]

[31.d]

[31.e]

[32.a]

[32.0]

[32.c]

[32.d]

[32.¢]

The general displacement functions u, v and w are given by eqs. 11.a through 14.c. The

unknown functions U(x.y), V(x,y) and W(xy) can now be determined by substitution of the

2. Analytical Method Development
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stresses eqs. 29.a through 29.e into egs. 12.a through 12.e. Integration of of eqs. 12.a, 12.b and

12.e leads to,
4 &+1 )
Uxy) = I C U xy) + U, ,
» = X CGhaiy (xy) o
A+1
4 Zy (@)
V(x, = C V¥ (x, + VvV, ,
(x.y) k§1 k Ok n+ 1) (x.y) o
9 Zﬁ“ @
Wi(x, = D, r w , + W, ,
(x.y) k§1 KT (x.y) o
where,
P = BuMp + By .
Bao
a = B + T
B
rk = - T‘f— ,
and,

Ule (x,y) = By (byx + 6bsy + 2b,) + B,,(3b,x + 2b,y + 2b;)

+3%3—(B,x+232y + 2By) x + gly) .

Vi (x,y) = B{2byx + 3b,y +2b;) + B, (6byx + 2b,y + 2 by)
+3-22?-(2B1x+32y +2By)y + f) .
W® (xy) = — [ Bu(bg + 2bypx) + Byxly + h(x) .
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[33.a]

[33.b]

[33.c]

[34.a]

[34.b]

[34.c]

[35.a]

[35.b]

[35.c]
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In addition, U and V must satisfy eqs. 12.c and W eq. 12.d. This leads to

a

aly) = [(Bes — Bra)bs + 3Byyby — —33—31])/2 + Uy [35.d]
fx) = [(Bgs = Bra) by + 3Byq by — '3“53—32]"2 + Pesbex + Vo [35.e]
h(x) = Bsgbgx + W, . [35.f]

The constants U, ,V, and W, may be dropped since they represents rigid body motion, terms
which were already included in the general formulation of the displacement functions (see eq.

11).

2.3.3 Application of the Boundary and Interface Conditions

2.3.3.a The Eigenvalue Solution

An examination of Figures 2 and 3 illustrate the conditions that must be applied to the sol-
utions to have the solutions satisfy the conditions of the skin-stiffener interface problems.
Specifically referring to Figure 3, the surface represented by 6 = a, and 6 = — n are gener-
ally free of any tractions. If pressure-loaded panels are being considered, these surfaces could
be exposed to the normal pressure traction. However, the magnitude of this traction relative
to the magnitude of the stresses generated within the material is negligible and can be con-
sidered zero. Hence, one condition on the analysis is that the surfaces at 0 = a, and

= — @ are traction free. In addition along the line 8 = 0, the stiffener and skin are joined. It
is the intent of the joining to provide a condition of no slippage along this line, i.e., the dis-

placemenis are continuous across the interface. Finally, from stress equilibrium arguments,

the stresses 6, 1, , and 1., , are continuous across the interface. These conditions provide the
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necessary equations for determining some of the constants, and hence the characteristic of,

F(2) and ¥(2).

The conditions of traction-free boundaries are represented by (see Figure 3),

o ray = Wra) = Wra) = 0, [35.a]
o@r,-m = @ -m = Fer.-m =0 . [36.b]

where the superscripts 1 and 2 designate material 1 (flange) and material 2 (skin) respectively.

For a perfect skin-to-flange bond the interface conditions along 6 = 0 require,

o (r,0) = o®r.0) |, [37.a]
o = 9o [37.6]
e rno) = o [37.c]
W0 = u?xo |, [37.d]
VW0 = v ix0 |, [37.e]
w0 = w?xo0 . ' [37.]

Finally, at the ends of the cross-section (see Figure 3) the following integral conditions are

required to be satisfied,

{ fa edxdy =0, ffr,dxdy = 0, [38.a,b]

f faoz0xdy = P, | [yo ydxdy = M, , [38.c,d]

o,xdxdy = M, , (X — Toy)dxdy = M, . [38.ef]
A y a Ty

|
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It should be noted that as far as the above end conditions are concerned, it is possible to
impose kinematic boundary conditions rather than force conditions, or it is possible to impose
a mixture of the two. For example, rather than impose the area integral of o, over the body’s

ends to equal P,, it can be required that w = e, z, e, being an applied axial strain.

The substitution of stresses, eqs. 31.a through 32.e, and displacements, eqgs. 33.a through
35.f, into the traction-free boundary conditions, egs. 36.a and 36.b, and stress and displace-
ment continuity conditions, eqs. 37.a through 37.f, places certain conditions on the siress
functions, F(x,y) and ¥(x,y). However, following the substitution of stresses and displacements
into eqgs. 36.a through 37.f and the application of variable separation to the resulting ex-
pressions, it is evident that the conditions on the eigenvalue expansion part of the solution
separate from the conditions on the auxiliary and particular parts of the solution. Therefore,
the conditions on the eigenvalue expansion part of the solution (i.e., F®(x,y) and y*(x,y)) are
treated separately from the conditions related to the particular and auxiliary part of the total
solution (i.e., F(x,y), w*(x,y) and y®(x,y) ). The imposition of traction-free and traction and
displacement continuity conditions on F®(x,y) and y*(x,y) leads to the eigenvalue problem
associated with 8 and A. Hence these parameters are determined uniquely for each problem.
The conditions on F@Xx,y), w'*(x,y), and y"¥(x,y) for the specific skin-stiffener configuration are

discussed later, while the conditions on the eigenvalue expansion are discussed next.

The traction-free boundary conditions associated with ¥(x,y) are given by egs. 36 as,

T(z1e)(r-<11) = T(z%)(",-n) =0 , [39.a]

and the traction and displacement continuity conditions by egs. 37 as,

5(r,0) 130y | [39.b]

wiix,0) w?ix0) . [39.c]

Equations 39.a through 39.c lead to the following relations associated with y'*(x,y):
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2
T D"P(cos a + v) sina)®*V = 0 | [40.a]
K=1

2

I o= =0, L40]
2 2
5 oAt = 3 p@ Sy | [40.c]
k=1 k=1
2 (5+1) 2 (8+1)

o) X - D2 . X [40.d]

& PR En T & K e

where r, is defined by eq. 34.c. The above 4 simultaneous set of equations forms the

eigenvalue problem for 8. This set of equations can be written symbolically as,

[Q, 51D = 0 . [41.a]
For a nontrivial solution the values of § are given by,
| Qo,, & | = 0 . [41.b]

The eigenvector, 5, consists of the two eigenvectors, D" and 5‘2’. related to materials 1 and

2, respectively, i.e.,

)

D = {. , [41.c]
502)

where both D and D consist of two constants each.

if & is complex, solutions occur in complex conjugate pairs of the form,
S=yxip . [41.d]

However, in order that w{x,y) be finite at the origin,

2. Analytical Method Development 27




-1<yv . [41.e]

The eigenvalue problem for & is described in greater detail in Appendix B.

The boundary conditions associated with F {x,y) are given by eqs. 36 as

i (ra) =0 , [42.a]

og) {r,ay)
0-(62) (r' _ n) = t(f%) (r' —_ n) = 0 . [42b]

The traction and displacement continuity conditions associated with F(x,y) at the interface

(6 = 0) are given by egs. 37,

ooy = o@(ro [43.a]
o = Bro [43.b]
Wxo = ?xo [43.c]
Wixo = v@x0 . [43.d]

Equations 42.a through 43.d lead to the following 8 simuitaneous equations associated with

F(O)(X,y) :

4

k2=‘,1 cM*(cos ¢y + W sina)?*? = o [44.a]

ké e " cos a; — sin a)(cos @y + pi sin a)®*V = 0, [44b]
kf; c@ (-2 = o | [44.c]

ké PP (-2 = o | [44.d]
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4 4
3 c) Myt = I c@ ry*ra [44.e]

4 4
k§1 CS) ')» “&1) (1)(14‘2) = k§1 c{f) I’)" u&?) (1)(l+2) , [44f]
4 (A+1) 4 (A+1)
(1) (1) _X = {2) ,(2) _X
c = 3 P X :
G ST T B SR Ty 4]
4 (A+1) 4 (A+1)
(1) (1) X - (2) S(2) X
C —_— = C —“—— .
k§1 K (A +1) k§1 k9 (A +1) La4n]

The above set of equations form the eigenvalue problem for A which is written symbolically

as,
[A@.0N1C =0 . [45.a]

For a nontrivial solution the values of A are given by,
| Ay, ) | = 0. [45.b]

The vector C is composed of C" and C® associated with materials 1 and 2, respectively,

2m

¢ = {_ . [45.c]
2@

The eigenvectors C!" and C® consist of four constants each. If A is complex, solutions occur

in complex conjugate pairs of the form
A=nxik . [45.d]
However, in order for the displacements u(x,y) and v(x,y) to stay finite at the origin,

-1<7 . [45.e]
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A detailed description of the eigenvalue problem for A is given in Appendix B.

The eigenvalue problems associated with A and & do not occur in a standard form and hence
require special procedures in order to determine the eigenvalues. Two methods were used in
the present investigation, both methods involve the computation of the characteristic ex-
pressions (in closed-form or numerically) which is equal to the determinant of the particular
matrix of interest, i.e., Q of eq. 41.b or A of eq. 45.b. The first method, Muller {34,35], operates
on a complex characteristic equation to find the roots. Once a root is found it is eliminated (or
deflated) from the characteristic expression. This method is particularly well suited for com-
plex root computation (see ref. 35). The second method is based on the secant technique for
simultaneous nonlinear equations [36). Here the real and imaginary parts of the determinant
are treated as a set of two simultaneous equations, with the two unknowns being 1 and & or

yand B.

Using the relations between the stresses and the stress functions, egs. 15.a through 15.e,
the eigenfunction expansion of the stresses can be written [23]. For the n* real eigenvalue 8,

and A,, these stresses take the form,

o) = rf; c,,[é1 Re (chl )2 Zkr) + Im (chhromih?Zhm) 1+ o [46.a]
o) = T el £ Re(chzin) + micllinzin) 1+ 0f [46.0]
tﬁ('z, = - ni cn[é_;1 Re (¢ ul) Zby + i1m (cg()kﬂ)pf(') Zi) 1+ rgf;,i) , [46.c]
W) = - ng d [Re (df) Z8) + Im(dlb 2T + L [46.d]
) R ng d [ Re ('} ol 280) + im (@l ol 2By + <@ (46.]
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Whereas, for the n*" complex eigenvalues 3, and A, the stresses take the following form:

ol = }: { cRel }; e 2z + ¢ im[ z D ztly + o | [47.a]
o) = ): { c,Rel z Mz + cpim( }: chzirly + o [47.b]
== % (oRel £ hullzrl+coml £ cllulZe]) + ) . [4rc]
) = - ni‘; £ d,,Re[k:z:1 dll 257 + o, lm[é1 d 271y + L [47.d]
i) = n?; { ane[k); df) o) zE"] +d, |m[é1 dt) u{j’z8 1y + @ [47.¢]
where, i = 1,2 corresponding to material 1 (flange) and material 2 {skin). In addition,
¢,.c’n,d, and d’, are unknown real coefficients, whereas, cl and df,i = 1,2, are known

quantities of the normalized n* eigenvector associated with materials 1 and 2 respectively.
The reader is referred to Appendix B for a detailed discussion of the appropriate eigenfunction
representation for a real and complex eigenvalue. Next the application of the boundary and

interface conditions on the auxiliary and particular portions of the solution is discussed.

2.3.3.b The Remaining Part of the Solution

In previous sections we saw that the imposition of traction-free boundary and interface
cénditions on the eigenvalue expansion part of the solution for F(x,y) and ¥(x,y) led to the
eigenvalue problems for A and 8, respectively. In this section these conditions are enforced
on the other parts of these solutions (i.e. F@ (x,y), ¥® and ¥® (x,y)). The imposition of the

boundary and interface conditions are implemented in the context of the skin-stiffener geom-
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etry as discussed in section 2.3.2. The traction and displacement continuity conditions are

given by eqs. 37. These conditions require that,

o) = 0 [48.a]
vixo) = vPxo [48.b]
X0 = X0 [48.c]
%0 = 13x0 [48.d]
o x0) = oPxo) . [48.¢]

Here we chose to use the Cartesian components of stress. Considering eqs. 11.a through 11.c

and 29.a through 30.e the above relations become:

gl al)

a
_ 1233 22 + U(a1)(X,0) + (1)(21)2 + UQ) = [498]
B2 a2 )
_ 1 5 33 z + U(az)(x,o) + (,:’(2 )Z + ug2) ,
o) s, o 1
—2—3—-2 + Bg)xz + V(a‘)(x,O) + (o(a)x - (0(11)2 + v,(_.:) = [49.b]
B2 a2 |, )
DB g s v+ ok - oz 4 VP
B"x +BMallz + Wl - ofx +w) = [49.c]
BPx +BP)aPz + W - ox +w? |
- 2bf)x + bf) = - 26@'x + b | [49.4]
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2bix + bf) = 2bx + b | [49.e]

6bi"x + 2b{" = 6bPx + 2b@ . [49.1]

Matching coefficients of the same power of x,y, and z we arrive at the following relations:

BVall) = B?ald ., =123, [50.a]

BY) = B | [50.6]

ol = o® | =12, [50.c]

b = b | i = 1256810 [50.d]

u® x0) + ul) = U0 +u@ | [50.e]

Ve (x0) + o x + V) = VB (x0) + o x + V2, [50.f]
w@ o) + wl = w0+ wl? | [50.g]

where the superscripts 1 and 2 correspond to material 1 (flange) and material 2 (skin). Next
the traction-free conditions are applied to the skin and flange free surfaces. These conditions

for the skin, eq. 36.b, require that,

ol (r.—m =0 , [51.a]
@ —m =0 , [51.p]
@ -n =0 . [51.c]

Consideration of eqs. 28 through 32 in conjunction with the above conditions leads to the fol-

lowing relations:
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- 6bPr + 202 = 0 | [52.a]

2b@r - b =0 |, [52.b]
b — 2bFr = 0 [52.c]

Equating coefficients of the same power of r yields
b? =0 , i= 1256810 . [53]

Finally, considering eq. 50.d together with eq. 53 leads to
b = b® =0, i=1256810 . [54]

Based on the above results, the auxiliary stress components, eqgs. 30, reduce to

od = 2byx + 6byy + 2b, [55.a]
o =0, [55.b]

W@ = - 2byy [55.c]

% =0, [55.d]

13 = by + 2byyy . [55.e]

Further information can be obtained by considering the traction-free conditions for the

flange (material 1). These conditions are

081) (r, ay)

|
o

[56.a]

g (r.ay)

0
o

[56.0]
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Wra) =0 . [56.c]

The use of these conditions, together with eqs. 32 and 55, leads to the following relations:

6rnlmby) + nb{"] + 2b6{"n? = 0 , - [57.a]
- 2rnlb"@m? - n%) + 30{"mn] - 2mnbl"’ = o0 | [57.b]
- nby? - 2b{Vrn® = 0 |, [57.c]

where, m = cos(a,), n = sin{a,) . Equating coefficients of the same power of r leads to
b =0 , i=234791 . [58]

Finally, considering eqs. 50.e through 50.g in conjunction with eqs. 27.b, 35, 54 and 58 leads

to
1 (2)
a a
e - ey - op 02
2p bl = alYsl) - a¥BP | [59.0]
(1) (2)
ape = S - e . [55.c)
bgz) = 0, [59.d]
(2)
b = - 2By [59.e]
(2)
Pss

Applying relation 50.a produces

o = ke, o = K b = k8l [60.2.5.c]
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where,

1) (2 2) (1
a8 - ool

2) (1
3(11) ag3)

K = _;_ [60.d]

Finally, considering all the relations derived in this section, the auxiliary stresses for the skin

and stiffener are as follows:

Flange (material 1)

o&a‘) = oga‘) = zﬁf’;’ = r{fz‘) = Tg;,) =0 . [61.a]

Skin (material 2)

o) = 2k BPx + BPy + BY) | [61.6]
cg/az) =0, Tglazz) =0 , [61.c.d]
289
W) = - 2kBPy , {2 = —&%—y : [61..]
55

The stresses in material 1 (flange) and material 2 (skin) are given by egs. 46.a through 47.e.
These stresses are given in terms of the unknown coefficients c,c’,d, d’, and
B, i = 1,2,3,4. For the specific skin-stiffener problem these coefficients are determined by a

collocation procedure. This is discussed next.
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2.4 Collocation Procedure

The eigenfunction expansion elasticity solution is valid for a semi-infinite domain. The
particular boundary value problem associated with the skin-stiffener geometry is solved by
assuming that the solution is valid in the finite domain represented by the localized flange
termination region. Furthermore, the solution is assumed to be represented by a finite number
of terms in the series. The unknown coefficients ¢, and c’, in egs. 46.a through 46.c and 47.a
through 47.c are determined using the boundary collocation technique. Referring to
Figure 2, the boundary of the local region is bounded by contour ABCDEFA. In the actual
structure analysed, boundaries AF, AB, BC, and ED are traction free, whereas boundaries CD
and EF are subjected to both normal, o,, and tangential, t, tractions. Obviously in the nomen-
clature of the problem, o, = g, and 1, = 1, on CD and EF, and 6, = ¢, and 1, = 1,, 0n BC and
DE. By the development of the elasticity solution, the traction-free conditions on FA and AB
are already satisfied. The collocation procedure is used to satisfy the traction-free conditions
on boundaries BC and DE, and to match the normal and tangential tractions on boundaries
CD and EF as determined by the global finite-element analysis. It should be noted that in the
boundary collocation procedure, the normal and shear stresses, ¢, and 1, , along the contour
BCDEF are written in terms of the unknown coefficients, c, and ¢’, in a truncated eigenfunction
expansion. These stresses are matched with the same stress components calculated by the
finite-element analysis on the contour. Although it is possible to collocate other responses,
such as three components of stress, the strains, the displacements, etc,, it is feit that matching
the normal and shear stresses on the boundary is the best choice. The main reason for this
is the fact that enforcement of the force equilibrium conditions on the local region as a finite

body involves only the normal and shear traction on the boundary of the body.

For the specific problem here, the collocation at m points around boundary BCDEF leads

to 2m simultaneous equations from which the 2n unknown coefficients are determined. The
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use of more collocations points (i.e., m > n) leads to an overdetermined set of equations.
Solution of these equations produces the 2n unknown coefficients c, and c¢’, which satisfy all
boundary conditions in a least-squares sense. If the original set of equations is represented

by,
S§=AC , [62.a]
then the least squares solution for Cis [371],
C=(A"A)"ATS . [62.b]

In the above, A is a 2m x 2n known matrix (for which m > n ), S is a vector of length 2m
consisting of a 2m known boundary stress quantities, and C is a vector of length 2n consisting
of 2n unknown coefficients, ¢, and ¢’ , of the truncated eigenfunction. The elements of matrix
A involve material properties and the coordinates of the collocation points. Once these coef-
ficients are determined, the stresses in the localized region can be written. For a converged
eigenfunction, these stresses are assumed to represent the true stress field in this region. In
a later section convergence is studied by varying the number of terms (or eigenvalues) in the

truncated function expansion and by varying the number of coliocation points.

2.5 Global Finite-Element Analysis

To facilitate the application of the local elasticity solution to the skin-stiffener problem, a
finite-element program was implemented which incorporated the generalized plane deforma-
tion assumption. This finite-element formuiation is consistent with the elasticity solution de-
veloped earlier. The finite-element program was developed for two reasons. The primary

reason was to provide boundary conditions for the eigenvalue expansion local elasticity sol-
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ution. The second reason was to check the results of the eigenvalue expansion. As indicated
in the introduction, the methodology was developed for geometrically linear problems, and
then extended to geometrically nonlinear problems. Thus the finite-element program imple-

mentation was very important in the first step of the solution strategy development.

A body which conforms to the generalized plane deformation assumption may be analysed
using a two-dimensional finite-element model. In this section a short description of the finite-
element program (PE2D) is given. The PE2D program developed is based on the FEM2D
finite-element program, [38], with the appropriate modifications to meet the need of the pres-

ent investigation. For a more detailed discussion the reader is referred to Appendix C.

The generalized plane deformation elasticity finite-element model is based on the dis-
placement field given by eqs. 11.a through 11.c for homogeneous anisotropic bodies for which
stresses do not vary along the generator (i.e., the z axis). This displacement field can be

written in vectorial form as,

U=1,+U , [63]
where;
U7 = {Uxy)  Vixy) 5 W)y
Up = {UelX¥.2) 5 VolXy.2) i Wolxy.2)}
and,

B,a

Uoxy.2) = = —22 = Byz
B,a

VolX.y.2) = ——2233 22 + Byxz
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Wo(xy.z) = (Byx + Byy + Bjlazsz

Here the terms associated with the rigid body rotation and translation are omitted. The un-
known functions U(x,y), V(x,y) and W(x,y), are approximated according to the finite-element
method. Further, it may be shown that the unknown constants B,, (i = 1,2,3,4) are related

to the body’s kinematic end conditions, that is:

€0
dss

Ky Kxz
, By = - —= . 64
a33 4 [64]

B, =
3 2

) Bz=

in the stiffened skin structural context, e, and x, are the axial extension and curvature in the
z direction, and x,, is the twist curvature about the z axis. The coefficient B, is related to the
inplane twist about the y-axis and is of no consequence in the structure considered here and

is therefore set to zero. The strain vector, €, is given by,

ex = E + g , [65]

where;

=T _ . . . . .
8)(_{{'-')('E'y'SZ' szv'sz-'ny}.

Bl =qdL . &V . . W W N, v,

ox ' oy ey T ox T oy ox '
i K K
gg = {0; 0 ; (o + %, ¥) : —-2£x, T"zy, 0}

Since only orthotropic media are being considered, the constitutive relation is as given before

(see eq, 6.a) as
o, = [Al%,
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Considering eqgs. 6.a and 65, it may be concluded that the problem of determining V(x,y) and
U(x,y) decouples from the problem of determining W(x,y). In addition, since U,V and W are
functions which depend on x and y alone, only a two-dimensional finite-element model is re-
quired. The finite-element model is derived via the variation formulation in a standard manner.
The conditions for this model consist of specified overall kinematic conditions (i.e., e,, k,, and
K, specified ) and force and/or kinematic conditions on the boundary in the x-y plane. It
should be pointed out that because of the generalized plane deformation assumption, the
specified overall kinematic conditions e, x, and x,, do not,vary along the the z-axis of the

body.

2.6 Verification of the Analytical Model

In this section attention is given to a results relevant to the verification of the linear analysis
model. In addition, the fidelity of the local-global elasticity-finite-element analysis is demon-
strated. By fidelity is meant the accurate representation of stresses by the elasticity solution
within the localized region and the smooth transition to the global region. Whereas the con-
vergence of the finite-element method has been discussed in [39], there is no rigorous proof
for the convergence of the collocation method and its application to the present problem. For
the problem here the accuracy of such a procedure will depend on a number of factors such
as: a) the accuracy of the boundary conditions; b) the number of eigenvalues used in the
eigenfunction expansion; and c) the number of collocation data points. In the following section

these issues will be addressed.

in order to study convergence and accuracy of the current model, the elasticity results are
compared with results from a finite-element analysis in which the mesh was refined twice in

the localized region. The results are compared for a particular problem. The use of a finite-
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element analysis for comparison is due to the lack of another analysis of this particular
problem. Two flange geometries are considered in this phase of the study, a 90° and a 45°
flange termination angle, i.e., a, = 80° and a, = 45° in Figures 2 and 3. Two angles were con-
sidered at this stage so as to make conclusions regarding mode! verification more general.
The flange and the skin are constructed of an 8-ply quasi-isotropic ( £ 45/0/90), laminate, and
an 8-ply orthotropic { £ 45/90,), laminate, respectively. Material properties are given in Ap-
pendix D. The finite-element discretization for 90° and 45° flange angle skin-stiffener geom-
etries are shown in Figures 4a and 5a, respectively, for what is referred to as the coarse mesh.
Subsequent mesh refinements of the localized region are shown in Figures 4b,c and 5b,c. Due
to the geometric and material symmetry, only one-halif of the structure cross-section is mod-
eled. The particular problem considered for the verification study is shown Figures 4.a and 5.3,
namely the stiffened plate subjected to a pure bending moment M. The particular loading was
chosen to illustrate the computational method because this loading produce peeling and
shearing stresses at the skin-stiffener interface that are approximately the same order of
magnitude. it should be mentioned that for this problem t,, and 1, are identically zero.
Therefore, attention is focused on o,,0,, and t,,. The exact nature of the skin-stiffener inter-
face stresses near the flange terminus depends on the the value of 1,, the real pant of the first

eigenvalue {see eq. 45.d). These stresses are unbounded if —1 < 7.

In the coliocation procedure, the normal, o, and tangential, t,, stresses are collocated
along the closed contour ABCDEFA shown in Figures 4 and 5 by the heavy line. The stresses
as computed by the finite-element analysis of the entire cross section are used to provide
collocation data on the contour. in reality, collocation takes place only along boundaries BC,
CD, DE, and EF, since the conditions of stress-free boundaries along AB and FA are satisfied
exactly by the elasticity solution. Boundaries BC and DE were taken as stress-free faces of the
skin and flange, respectively, whereas the stresses along the internal boundaries CD and EF
are those determined by the finite-element analysis. These stresses on the boundary are

calculated exactly within the finite-element context by postprocessing the finite-element dis-
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placement data. The collocation points are uniformly spaced along the contour. The bounda-
ries CD and EF are placed at distance L from point A. This distance, shown in Figures 4 and
5, was chosen according to the condition that o, and t,, as computed by the finite-element
analysis must be continuous across the skin-flange interface. That is, the stresses o, and 1,,
computed by the elements on either side of the interface in the skin and flange must yield the
same value to within 5%. The theory of elasticity stipulates that these two components of
stress are exactly continuous across the interface. This 5% condition assures that the skin-
stiffener interlaminar stresses computed by the finite-element satisfy this condition to with a
small tolerance and thus are accurate in the global region. Based on this 5% condition, it was
determined that for the coarse mesh, L should be about 1.5 times the combined thickness of
the skin and flange. This value of L was kept constant for all subsequent mesh refinements
in order to eliminate variation in the results which may depend on L. In the subsequent fig-
ures the stresses are plotted as a function of the normalized distance, X = x/t,, from the flange
termination vertex (point A in Figures 4 and 5), where t, denotes the skin thickness. In all fig-
ures, whenever o, stress data is presented, values computed both in the skin and in the flange
are given. This dual computation is done because the stress component g, is discontinuous
at the interface and will have different values in the skin and flange. However, if interface
stress data for ¢, and 1., as computed by the elasticity solution, are given, only one value is
provided, since as stated above, these stress components are continuous across the interface.
On the other hand, for the finite-element computation of these two stress components, both
the stresses in the skin and the stresses in the flange are given. Plotting both the flange and
skin finite-element components will illustrate the degree to which the continuity condition on
these stresses is violated as the stress gradient becomes severe near the flange termination
region. Finally, all stress components are normalized by —'\g—:—’—- where M is the applied mo-
ment, -12'— is the distance from the neutral axis of the skin to the outer surface of the skin, and
| is the moment of inertia of a section of skin of unit depth into the paper. This strength-of-

materials view of normalizing the stresses is meant only as aid to not having to become in-

volved in discussing the actual magnitude of the numbers. The normalized stresses are
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denoted as G,, G,, and E,,,. Throughout the study, the stresses, and infact, distances, have

been normalized in a manner relevant to the particular problem.

Figures 8 through 11 show the variation of the skin-stiffener interlaminar stresses, o, o,,
and 1,, as a function of distance along the interface for the 90° and 45° flange termination an-
gles. Both stresses determined by the finite-element analysis and those calculated using the
truncated eigenfunctions, eqs. 46 and 47, are shown. The elasticity results shown in the figures
were generated using 15 eigenvalues and 100 colliocation points. The eigenvalues for both
geometries are given in Appendix D. Each figure illustrates caiculated values of a particular
stress component for each of the three different meshes (i.e., coarse, refined, and fine). The
data point closest to the vertex for which finite-element stress data is plotted is at X = 0.025.
It should be noted that X goes from 0 to 3 because the skin and flange are of equal thickness,
1, . and the length of the local region, L, is 1.5 times the combined thickness of the flange and
skin, 2t,. The scale of the vertical axes was taken to account for the value of the normalized

stress at X = 0.025.

A number of interesting observations can be made from these figures. In general, for both
flange termination angles, at sufficient distances from the flange termination vertex, the
finite-element and the elasticity solutions show excellent agreement for all three components
of stress. The point at which this agreement can be categorized as being excellent moves
closer and closer to the vertex with increases in the mesh refinement. As will be discussed
shortly, there is very little difference between the elasticity solution resulting from collocating
data from a coarse mesh and the elasticity solution resuiting from collocating data from the
fine mesh. In essence, for either flange termination angle, the elasticity solution does not
change from one mesh to the next and hence the use of the coarse mesh is sufficient. What
the figures are showing is that the elasticity solution coincides with the solution the finite-
element analysis is appearing to converge to. It shouid also be noted that o, and 1,, computed
by the finite-elements adjacent to the interface are discontinuous across the interface in some

region near the vertex. The situation is worst for 1,, than for o,. This discontinuity relates to

2. Anatytical Method Development 46



FINE MESH

1.50
1.25

FINITE ELEMENT, FLANGE
FINITE ELEMENT, SKIN
ELASTICITY, FLANGE
SKIN
REFINED MESH

ELASTICITY,

1.5
1.25

LQ

COARSE MESH

Q w
w Q¥

2. Analytical Method Development

skin

O 0 (&

for 90° Flange Termination Angle, Finite-Element and Elasticity

Results Using 15 Eigen:laluas and 100 Collocation points.

Figure 6. Skin-Stiffener Stress ©

47



FINE MESH

[T
2
<Z I
w 0 3
== =
$s a
1T}
Wuwx 2
uma I
=M &
2% T
[ TR Py 1Y}
llllllllhlllnlllﬂ
Cad v )
Tg] < M) N
|
.S
o Q 1o
I o -]
w0 _
ull e——
= —
lu —
[75)
@ -
L- -
o _]
o —

»,
l'“""“‘“M
4 =l

N < m QY] —

2. Analytical Method Development

()

x / tg

y

Skin-Stiffener Stress ¢, for 90° Flange Termination Angle, Finite-Element and Elasticity
Results Using 15 Eigenvalues and 100 Collocation points.

Figure 7.



'sjulod uopesojjo) 004 pue senjesuably gy Buisn synsey
1 §884)S Jauayis-ups ‘g ainbiy

Ayopsej3 pue Juswe|3-alud ‘elbuy uoneujwa) sbueld .06 10}

m# \ X m.+ \ X
L 0 ¢ 14 l 0 €
_

TTTT - _____qﬁad______—‘.l

.

Ax Ax Ax
2 2 2
a
¢ ] o
=) N 2
- . &
=i =il H
HS3W 3NId a HS3W a3aNId3d ] HS3IW 3ISHVOD 2
— — d
dg s S £
[ ]
=
8
ALIDILSY3 >
NDIS ‘ININITI 3LINIA o -
39NV ‘ININIIF 3LINIS Q <
™~




7
I AN
0
= c ~N
w x
s i - X
(@]
(@) U (@] un @ Tg} O
fg] N (@] ™~ ) N
At = T %
[
x 8
Ib w
©
M &
b
[77] [
: :
=z
<< . 5 K]
Lo w 7] w
X Z = N 4 8
z z X [
W (o) i
-G iy < ™~ :
330 - = Z x 9o .
uu§§ w ] < g’g
HEGh & ~ P
zz2<S c 2
| T FUR PV Y] .gc
%2
I £3
| o £2
o o Yo ®) 0w o -3
| (g} N (@) M~ L() N [
il
| 5
x o
o Q o) 3§
m R
x>
©3
2o
X @
3 0 52
[QV e
s g g
wl ]
(/2] \ g:’
1 =9
< u')_:’.
o] —_ X £2
o ne
»
o
R [
(@] LN o 5p] (] i
(@] o~ Tp] QY]

1.50
1.25

2. Analytical Method Development 50



w

[&)

z

< Z
- X
L
e
z Z
W w
= =
W w >
P
Luh.lg
W W+~
=]
2z %
L L W

FINE MESH

REFINED MESH

llllllllllll

.5

nvalues and 100 Collocation points.

et
*0 000

X

Skin-Stiffener Stress 0. for 45° Flange Termination Angle, Finite-Element and Elasticity

Results Using 15 Eige

COARSE MESH

Illlllllll

Figure 10.

2. Analytical Method Development



‘sjujod uofeso|jo) 01 pue senjeauaBiy ) Buisn synsay
b_u_«nu_mv:wEaEw_m.oa_:E.w_m:<:o=ac_Ehw._.mm:w_“_.mv._oh.,pnno.:w._o:wt_wmézm.:. o..:u_n_

s s s
v/ X ¥/ X 1/ X
¢ [4 | 0 ¢ 14 | 0 € e ! 0
_\ ___ﬁq—ﬁ___q_l—‘.l _______________I—‘.I. —_________—____.IP.I
10 . .
i
1
z A x
d ]
i o — €
i} ]
4 —4-
HS3W 3NI4 . HS3IW G3NI43Y HS3W 3SHVOD ]
s G s
ALIDILSYI3

NIXMS ‘IN3N373 3LINId
3JONVI4 "ININ3TT 3LINIA

LQ

52

2. Analytical Method Development




the inherent inaccuracy of the finite-element data near points of stress singularity. Although
the region of inaccuracy shrinks with increases in mesh density near this point, the discrep-
ancy between the two values of stress near the vertex is quite significant. This characteristic

occurs for both the 90° and the 45° flange termination angles.

To illustrate that the stresses as computed by the coarse mesh are sufficiently accurate to
serve as boundary conditions for the elasticity solution, Figures 12 and 13 illustrate the vari-
ation with X of the three stresses G,, G,, and _,,, as generated by the elasticity solution for the
two flange geometries. Each figure illustrates the three components of stress and each stress
component is represented by three relations, each relation corresponding to the collocation
of stress data from the different finite-element meshes. it is immediately evident from the fig-
ures that for each stress component for both flange angles, the results of collocating stress
data from the th‘ree different mesh densities coincide. This indicates that in order to obtain a
good approximation of the state of stress in the localized region using the elasticity solution,
only the coarse mesh need to be used. This is somewhat expected since at some distance
away from the point of singularity the coarse mesh will yield a converged set of stresses. That
is, the values of the stresses which were used for coliocation on the boundaries CD and EF
were approximately the same for all meshes. This supports the computation effectiveness of
the current procedure, since only a coarse finite-element mesh is required to produce highly
accurate stresses in the localized region. From the figures it is hard to distinguish between
the magnitudes of the stresses at X = 0.025. Hence, the values of G,,C, , and ?,,, at these
points, for the three meshes, are given in Table 1. It is observed that the percent difference

in these values is negligible, again emphasizing the power of this methodology.

At this point it is appropriate to depart from the discussion of the accuracy of the method
and illustrate some of the physical results that can be addressed from the analysis. Table 1
indicates that in terms of the peel stress, the 45° flange termination angle is better than the
90° flange termination angle. At X = 0.025, the normalized peeling stress is 0.290, while for the

45° angle, the peeling stress is 0.192, 33% less. On the other hand, the shear stress is about
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the same for the two different flange geometries. On balance, the 45° angle would be better
of the two. This coincides with intuition but the methodology developed here allows for the

behavior of the two different angles to be quantified.

Next, the issue of the convergence of the truncated eigenfunction expansion, as related to
the number of eigenvalues and collocation data points, is addressed. Figures 14 and 15 illus-
trate the variation with X of G,, G,, and ?,y as computed by the truncated stress functions (eqs.
46 and 47) for 90° and 45° flange termination angles. The multiple data on each plot corre-
spond to stress calculations produced by 5, 10 and 15 eigenvalues in the truncated
eigenfunctions. In these computations 100 collocation points from the coarse mesh were used.
As can be seen in the figures, convergence of the truncated stress functions for G, and ?,y
occurs between 10 and 15 eigenvalues. That is, the stress computation for 15 eigenvalues is
bracketed between the computation for 5 eigenvalues and the computation for 10 eigenvalues.
On the other hand, this convergence is not completely evident for 6,. There seems to be a
slight increase in this stress value with an increasing number of eigenvalues. There does not
seem to be a bracketing effect with increases in the number of eigenvalues, as was observed
for the other stress components. However, on a percentage basis, the increase of stress is
minimal. Hence it is felt that the use of between 10 to 15 eigenvalues leads to convergence
of the eigenfunctions in eqgs. 46 and 47. Figures 16 and 17 illustrate data for the same stress
components in which the number of coliocation points were varied. In particular, the number
of collocation points was doubled. For these computations 15 eigenvalues and a coarse mesh
were used in the stress computations. From Figures 16 and 17 it is apparent that the number
of collocation points has a minimal (or no) effect. This is true provided that the number of
collocation points are approximately 3 to 4 times larger than the number of coefficients in the
truncated eigenfunctions. It should be noted that the number of collocation points for the 90°
flange termination angle, Figure 16, is different than the number of collocation points for the

45° flange geometry, Figure 17, because of slight differences in geometry.
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Next a point of computational importance is addressed. In the course of the investigation
it has been found that the stresses on contour ABCDEFA, more specifically the stresses on
CD and EF, as computed by the finite-element analysis, are practically independent of the
flange termination angle. Thus the stress data from the finite-element analysis of the cross-
section with a flange termination angle of 30° can be used as collocation data for the elasticity
analysis of a 45° flange termination angle, or any other angle for that matter. Hence, the
finite-element analysis need to be done only once. This reduces the computation task, since
the one finite-element analysis can be used to produce multiple local elasticity solutions for
different flange termination angles. Figure 18 shows results of two elasticity solutions of the
90° flange termination angle. In one solution the finite-element data from the analysis of a
cross-section with a 90° termination angle and the eigenvalue expansion solution for the 90°
flange angle are used. In the other solution the finite-element data from the analysis of the
cross-section with a 45° termination angle and the eigenvalue expansion for the 90° angle are
used. Of course the former solution is the one that is correct but it is clear from the figure that
the latter solution is essentially identical to the former. Figure 19 shows the solution for 45°
flange termination angle solved using both 90° and 45° finite-element analyses as the bases
for the collocation procedure. Again it is obvious there is very little difference in the results,
indicating that the eigenvalues and eigenvectors play a very important rule in determining the

characteristic of the stress distribution in the local region.

it is appropriate at this time to address an issue that is often raised in conjunction with the
study of interface stresses. The point is raised now because it will put into context the results
to be presented in the remainder of this document. The analysis developed to this point has
assumed that the skin and the flange are joined along a line that represents a perfect bond
with zero thickness. Depending on the fabrication process, the bond line may have nonzero
thickness and the material within this thickness may have properties significantly different
than either the skin or the flange materials. At issue is the fact that the interface between the

flange and the skin may be an adhesive with nonzero thickness. Of concern is the influence
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of the adhesive layer on the peeling and shearing stresses. In what follows, the interface
stresses are computed using finite-element analyses for two adhesive layer thicknesses.
These results are compared to results for the case for which a zero bond line thickness is
assumed. The data presented provide important information as to whether the elasticity sol-
ution is conservative or nonconservative in the calculation of skin-stiffener interface stresses
when an adhesive layer is present. One may postulate that an elasticity solution in which the
two adherents are assumed to have a perfect bond of zero thickness will lead to noncon-
servative stress calculations. This is a consequence of the fact that the assumption of perfect
bond reduces the flexibility of the interface, as compared to if the adhesive layer was present.
Hence it is important to know how large an error is introduced as a consequence of thé as-
sumption made. To determine this effect, the same skin-stiffener geometry and loading con-
ditions which are shown in Figure 4 are analysed. Two adhesive layer thicknesses are

evaluated, LU 0.05 and b 0.10. The thicker adhesive layer represents the upper limit of

t, t,
the bond line thickness. The thinner layer thickness is the nominal bond line thickness. The
results from these analyses are compared to stress data for —tt:— = 0 layer thickness as com-
puted by the finite-element program and as computed by the local elasticity analysis. The
adhesive material properties are given in Ap‘pendix D. Mesh refinement in the localized region
corresponds to the fine mesh of Figure 4.c. A coarser mesh is used outside the |9ca| region.
However, element size in the coarse region is such that the adhesive elements’ aspect ratio
does not exceed 1:4. Figufe 20 shows the character of the interface peeling stress o, in the
localized region. Figure 21 displays similar information for the interface shearing stress Ty
Each figure consists of two plots, one illustrating the stresses at the interface as computed
by elements in the flange, and the other illustrating the same stresses but evaluated by ele-
ments in the skin. The finite-element stress data is denoted by symbols, whereas, the local

elasticity results are indicated as solid curves. As in previous figures the stresses and dis-

tance along the interface have been normalized.
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In general, the results of Figure 20 suggest that there is a slight increase in the magnitude
of the peeling stress, o, , between X = 0.025 to X = 1 as the bond line thickness increases.
However, the increase relative to the zero bond line results is quite small, something on the
order of less than 5%. In general, the resuits of Figure 20 indicate that even in the present
of adhesive layer, the peel stresses tend to become unbounded as the flange terminus is ap-
proached. The unbounded nature of the peel stress with an adhesive is in qualitative agree-
ment with the finding of [8]. The conclusions regarding the behavior of the shear stress are
not so clear. As has been shown in Figures 8 and 11, the elasticity solution and the finite-
element results for zero thickness bond line are in disagreement near the flange termination
point. Further, the finite-element shear stress results in the skin and in the flange at the
interface near the flange terminus are markedly different from each other. This essentially
indicates that the finite-element solution is not converged at this location. However, with the
adhesive present, the finite-element stress caiculation for the shear stress in the flange are
not that different than the calculation for shear stress in the skin. Has the finite-element sol-
ution converged and the shear stress is indeed finite and may be less than the zero bond line
case 7. Reference [9] indicates that the shear stress is also quite large near the flange ter-
mination point. This finding, coupled with what appears to be the poor shear response of the
8-node finite-element for this class of problems would lead to the conclusion that the shear
stresses are unbounded near the flange termination point, even in the present of an adhesive
layer. Hence, it is felt that the peeling and shearing stresses computed by the elasticity sol-
ution for the case of zero bond line thickness are representative of the behavior, even in the

present of nonzero bond line thickness.

Attention is now focused on extending the methodology to include geometric nonlinearities,

and to study the influence of stiffener geometry and material properties on interface stresses.
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3. Application of the Methodology to Stiffened

Composite Plates

3.1 Preliminary Remarks

If the cross-section being studied is actually part of a plate which is subjected to a particular
loading and boundary conditions, the cross-section experiences a loading more complicated
than the simple bending moment used in studying accuracy and convergence. In addition, the
loading is most certainly of such a magnitude that the plate experiences geometrically non-
linear effects. Thus, to extend the present work to the analysis of stiffened plates with realistic
loading and boundary conditions, the cross-section geometry being consider is assumed to
be part of a pressure-loaded plate which is clamped on all four sides. The particular plate
geometry and boundary condition were chosen since they represent the configuration studied
experimentally in [10] and, as shown in Figure 22, the situation simulates a unit cell of stiffened
aircraft skin structure. Although in actual aircraft structures the skin is generally subjected to

both transverse pressure and inplane loading, only a pressure load is investigated. In that
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context it should be mentioned that the methodology can be extended to incilude more general
loadings and stiffener geometries. In the present investigation a coordinate system different
than the one commonly use by plate theory was chosen (see Figure 22). This was done in
order to keep the coordinate system consistence with the elasticity solution developed earlier.
Although, this may lead to some confusion, it was felt that the plate analysis (herein called the
structural analysis) had only sideline importance in the present development, the elasticity

analysis being the principal analysis.

The analysis procedure to be discussed consists of three steps. First, a two-dimensional
structural level analysis of the entire stiffened composite plate is conducted. Next, a typical
cross-section in the central region of the stiffened plate structure is isolated and a three-
dimensional finite-element analysis of the cross-section is performed. The boundary condi-
tions for this three-dimensional model are provided by the structural level analysis. Hereafter,
the finite-element analysis of the stiffener-skin cross-section is alluded to as the substructural
analysis. In the previous chapter this type of analysis was referred to as global analysis. Here,
it is felt that since the stiffened-skin cross-sectional analysis is a subset of the structural level
analysis, this terminology is more appropriate. Finally, the stresses from the substructural
analysis are coupled with boundary collocation scheme to produce a rigorous eiasticity sol-
ution in the flange termination region, i.e., the localized region. The scheme thus may be
termed as a structure-substructure-local analysis. Both the structural and substructural ana-
lyses were conducted using the commercially available Engineering Analysis Language (EAL)
finite-element code [40]. Before proceeding to discuss the structure-substruéture-local analy-
sis model, the extension of the elasticity solution to account for geometric nonlinearities is

considered.
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3.2 Geometrically Nonlinear Elasticity Analysis

Since stiffened composite aircraft skin structures are generally designed to operate in the
postbuckling or geometrically nonlinear range, this characteristic must be considered. De-
spite the geometrically nonlinear deformations, it can be assumed that the strains are small
and hence linear elastic material response will prevail. In addition, for a thin flexible structure,
such as a stiffened composite plate, it is customary to assume that the inplane deformations,
u and w, are much smaller than the plate dimensions in x and z directions, whereas, the out-
of-plane deformation, v, can be of the same order of magnitude as the plate thickness: The
above assumptions lead to neglecting all nhonlinear terms in the strain-displacement relations
which contain the derivatives of u and w (" indicates inplane displacement of the plate
midsurface). In addition, if it is assumed that a line perpendicular to the midsurface remains
perpendicular and unstrained after deformation, then one arrives at the well-known Von

Karman plate kinematic relations.

The extension of the geometrically linear elasticity solution previously developed to the
geometrically nonlinear range relies on (for the problem studied here) the assumption of small
strains and small to moderate angular rotations, o, and w,, about the x and z axes. In addition,
it is required that these rotations are independent of spatial location within the localized re-
gion. Under these assumptions the stress equilibrium equations written in the deformed body
coordinates are satisfied by the stress function relations, egs. 15.a through 15.c, written in the
same coordinate systems. To facilitate our understanding as to why such a statement can be
made, a brief discussion of the general noniinear stress equilibrium conditions follows. For a

detailed discussion of the subject the reader is referred to Novozhilov, [41].

in the geometrically nonlinear range the equilibrium equations are derived by summing

forces on an infinitesimal element in the deformed state. For the purposes of the analytical
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development, it is sufficient to concentrate on the geometric representation of a body under-
going small strains and small to moderate rotations. In the case of small straining, the
infinitesimal element shape in the deformed state may be approximated by its original
undeformed shape. In addition, the x-y-z coordinate system will be transformed into a rec-

—~

tangular cartesian system, X-y-Z, in the deformed body, as shown by Figure 23.

In the skin-stiffener nonlinear analysis context, the following assumptions are made:
(a) The condition of small strains exists in the localized region and linear elastic material
response is obeyed.
(b) The condition of small to moderate rotations exists and these rotations are inde-
pendent of spatial location within the localized region.
Under the above considerations, the localized skin-stiffener region in its originai shape
undergoes rigid-body rotations as shown in exaggerated form in Figure 23.a. Since X-y-Z, is a
rectangular cartesian system, the equilibrium equations can be written in the deformed state
by adding tildes over x,y and z. Hence, the elasticity solution developed previously is assumed
to be valid, provided that it is applied in the deformed body state and that the angular rotations
are spatially uniform within the region of its application. The procedure outlined previously
for the determination of the coefficients, ¢, and ¢’, in the eigenfunction expansion, eqs. 46 and

47, is then valid provided it is performed in the deformed body state.

3.3 Structural-Substructural-Local Analysis Procedure.

The structure-substructure-local analysis procedure is depicted by Figure 24. First, a
structural analysis of the entire blade-stiffened plate (Figure 24.a) is conducted using plate

elements. Next, a substructural analysis of an isolated region, where skin-stiffener interface

3. Application of the Methodology to Stiffened Composite Plates 73



(a) Finite Rotation Infinitesimal Body Geometry.

UNDEFORMED

(b) Finite Rotation of the Skin-Stiffener Local Region.

Figure 23. Nonlinear Skin-Stiffener Analysis Geometry.
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stresses are expected to be high, is performed (Figure 24.b). Finally, a locai elasticity analysis

of the flange termination region is performed (Figure 24.c).

The structural finite-element mode!l uses plane stress membrane and bending plate ele-
ments. The substructure finite-element model employs three-dimensional brick efements. All
of these elements are available in EAL. Using these elements, both linear and nonlinear an-
alyses can be performed. The nonlinear solution algorithm used by EAL employes the full or
the modified Newton-Raphson method. In the present investigation the full Newton method
was used. Most of the elements in the EAL library (and all of the ones used here) are based
on Pian’s [42] hybrid element formulation derived according to the minimum complementary
energy principle. In general terms, this formulation assumes a stress field (generally in
polynomial form) which satisfies stress equilibrium in the element interior. The displacements
along the element boundaries are expressed in terms of compatible generalized nodal dis-
placements, in a manner identical to the one used in displacement formulation finité-element
development. Next, using the principle of minimum complimentary energy, the element
stiffness matrix can be constructed. For a detailed discussion of this method see [42] and

Appendix C. In the next sections each step of the analysis procedure is discussed.

3.3.1 Structural Analysis

3.3.1.a Details of Finite-Element Analysis

The stiffened plate is discretized using 4-node plate elements, referred to as the E43 ele-
ment in EAL, as shown in Figure 25. Each element of this type has 5 degrees of freedom

namely;
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To verify of the structural analysis procedure and the accuracy of the EAL finite-element
model, a stiffened plate configuration which was tested and analysed in [10] was reanalyzed
using EAL, E43 elements. In [10] the STAGS finite-element model was used in the analysis of
the plate. The stiffened-plate finite-element discretization used was similar to the one shown
in Figure 25. The comparison between the EAL analysis, the STAGS analysis, and the exper-
imental data is shown in Figure 26. In the figure the out-of-plane deflection, at the center-of-
plate and in the skin away from the center of the plate, are plotted as a function of the applied
pressure. Both the results from STAGS and from EAL are based on geometrically nonlinear
analyses. The figure clearly show that the two finite-element methods give nearly identical
results. For an explanation of the difference between the experimental data and the analytical
results, the reader is referred to [10]. Results like the one displayed in Figure 26 provide
confidence in the accuracy of the EAL structural analysis model used in the present investi-

gation.

3.3.1.b Details of Structural Analysis

To be consistent with the constitutive law used in the elasticity solution, in the structural
level analysis all extension and bending-twist coupling terms are set to zero. These terms
inciude By, By, Dyg, and D, For symmetric balanced laminates, such as the ones considered
here, B, = B, = O for both the skin and the flange. On the other hand, neither D,y nor Dy
are zero. However, they tend to be small relative to D,,, D,,, Dy, and Dgg . Given these material
restrictions, and the geometry, and loading conditions considered, it was only necessary to

analyse one-quarter of the plate using the two planes of symmetry (i.e., [x,y,0] and [0,y,z}).

Before proceeding, an important point must be raised. The elasticity analysis of the flange

termination region relies on the assumption that the stresses do not vary with the z coordi-
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nate, i.e., the stiffener direction. The stresses in a stiffened plate which is clamped on all four
sides clearly vary with the z coordinate, particular near the ends of the stiffener. However,
toward the center of the plate there will be a region within which the stresses are quite uni-
form with respect to the z coordinate. It is in this region that the elasticity analysis is valid.
Consequently, it is in this region that the structural analysis will be refined to a substructural
analysis, and the substructural analysis used to provide boundary data for the collocation
scheme. It is fortunate that in many instances skin-stiffener separation occurs near the center
part of the plate because the analysis methodology discussed here is indeed valid in this re-

gion.

Since attention will be focused on the central region of the plate, it is of interest to study
the convergence of the structural level finite-element analysis in this area. Figure 27 illus-
trates a coarse mesh and a mesh which was refined twice in the central region. These two
meshes and one which was refined once, not shown in the figure, were used to study plate
response, and in particular, convergence. In the mesh refinement, triangular elements were
used as transition elements. The triangular element, E33, and the reguiar element, €43, are

discussed in Appendix C.

Figure 28 shows the convergence characteristics of the three components of displacement
along x at z=Db/3. The distance of z=b/3 is the distance from z=0 _to the second nodal line
along x and b is the flange half-width. The second nodal line was selected over the first one
since along the first nodal line, at z=0, both w and B, are zero and therefore cannot be used
for convergence study. The displacements studied are the displacements at the skin
midsurface. The figure shows the displacements for the three meshes used to study conver-
gence, i.e., coarse , refined, and fine meshes. It is clear that the results for the refined and
the fine meshes coincide, indicating convergence of the response along the line z=b/3.
Figure 29 shows similar results for components of rotation, B, and B, along the line z=b/3
Although the figures present displacements and rotations data at z=b/3, similar convergence

characteristics were observed for the entire mesh refinement region.
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Figure 27.
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One of the unique characteristics of stiffened composite plates is revealed in Figure 28. This
is the phenomenon of pillowing. Pillowing is the term used to describe the fact that the skin
at x/b=3 deflects out-of-plane more than the center-of-plate, x/b=0. This pillowing literally
pulls the skin away from the flange. Pillowing is the reason the displacement of the skin in

Figure 26 is greater than the displacement of the center-of-plate.

3.3.2 Substructural Analysis

The substructural analysis is conducted using 8-node hexahedrons and 6-node
pentahedrons, solid elements which are available in EAL. Each node of these elements has 3
degrees of freedom, namely u, v, and w. Both elements accept fully anisotropic material
constitutive behavior. To be consistent with the elasticity solution developed, the material
compliance matrix is taken to be orthotropic. A brief description of the two solid elements

used is given in Appendix C.

The substructural analysis is conducted on isolated area in the structure. As mentioned
above, attention is given to the plate center location. The region for which the substructural
analysis is carried out is indicated by the area outlined by the heavy line in Figure 30. In ad-
dition, Figure 30 also shows schematic discretization of the substructure mode!. The model
includes both sides of the symmetry plane and has a width of 4b/3. One side of the model
coincid.es with nodal lines in the structure model at z=2b/3. The model is discretized with 8
elements in the z direction and the mesh refinement of the flange-skin cross-section corre-
sponds to the coarse mesh used in section 2.6. As was done in the structural analysis, the
web is modelled with plate elements except that now the web is attached to the top of the
flange. The following displacements boundary conditions are imposed on the substructure

modei:
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Boundary Specified Displacements
(x,y,-2b/3) u,v,andw
(x,y,+2b/3) u,v,and w

(3b.y,2) u,v,and w

{0.y,2) u=20

(x,y,0) w =290

where u, v, and w are determined from the structural analysis displacement and rotation data

by applying Kirchhoff assumptions. That is:

ov
u(x,y,2) = Ug(x,2) — az° y [68.a]
vixy.z) = v5(x2) , [68.b]
v,
w(x,y,z) = w,(x2) + Y [68.c]

Here, u,, v,, and w, are the displacements of the skin midsurface as determined from the
structural level analysis. On the -z boundary the displacement boundary conditions are eval-
uated using the oddness and evenness of the displacement and rotation functions. These

conditions are

Ug(X,2) = Ug(X, — 2) ; Vo(X2) = vo(X, —2) ; Wwo(x2) = — wo(x, —2) ,
0Ve(x.2) _ MVolx, —2) 0vq(x,2) - _ Ovolx, — 2) [6e]
ox ox ' 0z 0z )
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The boundary conditions determined by using eq. 68.b lead to unnatural through the thickness
constraints at the boundaries of the substructural region. This restriction may be alleviated
by specifying linear variation of v through the thickness, as was done in [44]. In the present
study the local elasticity analysis was performed along the substructure symmetry plane
[x,y.0]. Consequently, it was felt that the effect of through-the-thickness constraints at the
boundaries, (z = % 2b/3), would have little if any effect on the state of stresses of the location
z=0. In addition to the displacement boundary conditions of eqs. 68, the substructure model
was subjected to transverse pressure. Here the pressure load was applied in the form of a
vacuum to the skin side. This was done in order to simulate the loading conditions used in

{10).

In a linear analysis, a set of displacements corresponding to a particular pressure level,
as compute by the structural analysis, is imposed on the substructure model. The system of
equations representing the state of the body is then solved once. Solution for any other
pressure level may be obtained by simple ratio of the previous results. In a nonlinear analysis,
a more complicated procedure is required. Specifically, the response at each pressure level
is the result of a series of finite-element calculation. First, a converged set of displacements
and rotations for a particular pressure level, say p, , is obtained using the structural analysis.
This set of displacements and rotations are then used to compute the boundary conditions
discussed above for the substructure model. Next, using these conditions, the set of equations
representing the substructure is solved iteratively until convergence is reached for that pres-
sure level. The converged solution represents the solution for one pressure level, p,. The
process must be repeated if another, say a higher, pressure level is required. Using the con-
verged solution, the stresses can be computed at any point throughout the interior of the
substructure using the stress polynomials which are part of the EAL finite-element formulation

(see Appendix C). These stresses are then used in the collocation scheme.

Before proceeding to discuss the local analysis procedure, it is instructive to compare the

response predicted by the substructural analysis with the response of the structural analysis.
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Probably the single most significant kinematic variable in the analysis of flexible stiffened
plate structures is their out-of-plane deformation. Consequently, this variable was chosen as
a measure of comparison between the two models. The results of such comparison are shown
in Figure 31. In this figure the out-of-plane displacement v is plotted as a function x for both
the structure and substructure models. The results correspond to nonlinear analysis using 10
psi applied pressure. One portion of the figure corresponds to v(x,0) and the other portion to
v{x,b/3), z=b/3 being half the distance between the symmetry plane and the boundary in the
substructure model. The substructure extends to 3b in the x direction, as can be seen from the
point of termination of the dashed line. The figure demonstrates the excellent agreement be-
tween the two models. However, as would be expected, the substructure model appears to
be slightly stiffer. One may improve on the agreement between the two models by adding
additional elements in the z direction to the substructure model. This, off course, would in-
crease the cost per run. The error observed with the present results are on the order of 1 to

2 % and do not justify the increase in cost.

3.3.3 Application of the Local Elasticity Analysis

In practice there is only one difference between the geometricalily linear and nonlinear iocal
elasticity analyses. The difference between the two is that in the nonlinear analysis the
collocation procedure must be performed in the deformed body configuration. In practice, this
presents no problems. It should be pointed out that should collocation of displacements or a
mixture of displacements and stresses been used, extension to the nonlinear case would not
have been as simple. Given the discussion of section 3.2, the only requirement on the local
geometrically nonlinear elasticity analysis which is different from the linear analysis is that
o, and 1, must be computed in the deformed local region configuration. Having computed the

normal and tangential stresses along boundaries CD and EF (see Figure 23), the collocation
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procedure outlined in section 2.4 has the same format for the two types of analyses. For the
loading conditions considered in the study, boundary DE of the local region is subjecied to
applied pressure, p. As stated earlier, this pressure is negligible, in the collocation procedure
context, as compared to the stresses generated by the pressure (i.e., on boundaries CD and

EF).

Other restrictions in the present analysis which are a result of the assumptions used in the
the elasticity solution relate to the uniformity of response in the local region. These re-
strictions are:

{a) The stresses do not vary with z,

(b) e,, x, , and x,, are uniform throughout the local region.
For the skin-stiffener geometry, the loading conditions, and the material constitutive law used,
these conditions are met to within a 10 % (or less) variation. With a 10 % variation, the re-
strictions imposed by the elasticity solution are not perfectly satisfied. However, they are suf-

ficiently close from an engineering view point.

To utilized the convergence information established in section 2.6, the stress calculations in
the local region using EAL solid elements are compared to the stress calculations using the
PE2D finite-element. It was hoped that on the boundary of the local region, the EAL solid ele-
ments would yield the same stresses as the PE2D elements. If the data compared favorably,
then the convergence studies of Chapter 2, using PE2D, could be used to imply convergence
of the EAL analysis. To facilitate this comparison, a case which was studied previously using
PE2D was used. This is the case of bending iliustrated in Figure 4. The results of one such

comparison is shown in Figure 32. The comparison is for the coarse mesh Figure 4.a. As be-

fore, the interface stresses are normalized by hg:' Both the stresses in the skin and flange,
at the interface, as computed by EAL and PE2D are shown. Further, the elasticity solution as
derived from the collocation of stress data generated by EAL and generated by PE2D analyses
are also plotted. Apparent from the figure is that the two approaches produce identical

elasticity solutions. On the other hand, there are some differences with regard to the finite-
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element computed stresses within the localized region. This is particularly apparent for 1, .
However, this is not surprising, since the EAL solid elements have constant shear stress
through the element cross-section. Hence such an element will have a more difficulty con-
forming to the large stress gradients in the localized region. Nevertheless, PE2D and EAL
produce almost identical stresses along the local region boundaries at x/t, = &+ 3. This in turn
produces the perfect agreement between the two elasticity solutions. Based on the data pre-
éented in section 2.6 and comparisons like the one shown in Figure 32, it was concluded that

the use of EAL leads to an accurate local elasticity analysis.

In the last part of this chapter the local analysis of the skin-stiffener interface in the pressure
loaded plate is presented. This presentation completes the analysis procedure depictéd in
Figure 24, starting with the structural analysis of Figure 27, proceeding to the substructural
analysis of Figure 30, and ending with results similar to Figure 32, but for a pressure loaded
plate. In the following figures, the stresses are normalized by the applied pressure, p, and

distance have been normalized by the flange half-width, b, or by the skin thickness, t,.

The stresses along the entire skin-flange interface are shown in Figure 33. Figure 34 fo-
cuses on the distribution of these same stress components in the local flange termination re-
gion. It should be kept in mind that the Ioadiﬁg is actually a 10 psi vacuum applied to the side
of the plate without the stiffener. Thus the plate out-of-plane deformation is in the -v direction
(see Figure 24). The flange termination angle is 90°. Figure 33 indicates that along the entire
interface, on either side, the stress o, is positive. This despite the fact that the interface is
on the top side of the skin and, in the sense of a linear analysis, subjected to compressive
bending stresses. The positive o, is attributed to the tensile membrane force that develops

as a result of the large out-of-plane deformations of the plate.

The peeling, o, is nonzero at the flange termination point, the local region, and under the
stiffener web. Since the stiffener web has much more resistance to out-of-plane deformation,

the skin has a tendency to puil away at this locality as well as in the flange termination region.
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Figure 34. Skin-Stiffener Stresses in the Local Flange Termination Region in Pressure Loaded

Plate.



The shear stress t,, is nonzero along the entire skin-flange interface, but it is constant in

magnitude away from the flange termination point, and away from the web.

This concludes the discussion as related to the analytical developments and their applica-
tion to actual stiffened-skin composite structures. In the next chapter the structure-
substructure-local analysis procedure will be used to investigate the influence of geometric
nonlinearities on skin-stiffener interface stresses. Following that is study of the influence of

stiffener parameters on the state of interface
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4. Results

With the methodology for computing skin-stiffener interface stresses verified as regards
convergence and fidelity, the influence of various stiffener parameters on the skin-stiffener
interface stresses can be evaluated. In addition, the importance of geometric nonlinearities
can be evaluated, and an assessment of the error incurred by not including these effects can
be made. To that end, this chapter begins by evaluating the influence of geometric nonline-
arities on the interface stresses. This is followed by the determination of the effects of stiffener
parameters on the state of these stresses. In the last part of this chapter, criterion by which
various stiffener designs may be evaluated for their tendency to separate, using the current
analysis procedure, are presented. The results presented in the following sections are for a
plate clamped on all four edges with a single stiffener, depicted in Figure 22. The plates are
subjected to three levels of transverses pressure, 4, 10, and 20 psi, respectively. The 10 psi
pressure level represents the operating aircraft fuselage pressure, while the 20 psi pressure
represents the design level. The 1 psi pressure level is used since the linear and nonlinear
analyses would produce similar results at this pressure level, and linear results for the other

pressure levels can be scaled from the 1 psi analysis.
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4.1 The influence of Geometric Nonlinearity

To a great extent, the importance of incorporating geometric nonlinearities in the skin-
stiffener interface stress analysis will depend on how flexibie the structure is. For stiffened
aircraft structures which exhibit out-of-plane deformations on the order of magnitude of 2 to
4 times the skin thickness, geometrically nonlinear effects can be significant. As was evident
from Figure 26, the skin-stiffener configuration being studied did in fact experience such de-

formation levels.

To study the influence of geometric nonlinearities on the interface stresses, a baseline
skin-stiffener configuration is considered. The three pressure levels are used, and the linear
analysis case is also considered for comparison. The baseline stiffener design has a web
height of h, = 1.5 in., a flange width of 2b = 1.5 in., and a flange thickness of t, = 0.04 in.
For this configuration the flange and the web are constructed of a quasi-isotropic laminate
with ( % 45/0/90), layup sequence. The skin is orthotropic with a laminate layup of

( + 45/90,),, and skin thickness of t, = 0.04 in.

Figure 35 illustrates the skin-stiffener interface stresses, o,, g,, and t,, along the entire
flange-skin interface length. Each portion of Figure 35 illustrates four relations, three of which
represent nonlinear analyses for 1, 10, and 20 psi pressures, and one that corresponds to the
linear analysis. Each relation is determined using a combination of stress data generated by
an elasticity analysis in the local region, and an EAL finite-element analysis outside of this
jocality. In Figure 35 and all other figures which display stress data, stresses are normalized
by the applied pressure. With this normalization the linear analysis is independent of the ap-
plied pressure level. The distance, x, from the flange termination vertex is normalized by b,
the flange half width, or by t,, the skin thickness. Clearly evident from the figure is the non-

linear interaction between the level of applied pressure and the magnitude of the skin-stiffener
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interface stresses. Focusing on the peel stress, for example, the linear and the 1 psi nonlinear
analyses produce stresses of similar magnitude. However, the nonlinear analysis for 10 psi
and the linear analysis show significantly different results. The 20 psi nonlinear analysis de-
viates even more from the linear analysis. In all cases and for all stress components, the large
stress gradients appears to be confined primarily to the local flange termination region. Under
the web there is a local maximum in the peel stress and the maximum value tends to de-
crease slightly with increases in pressure. Relations like the one shown in Figure 35 indicate
that load transfer from the skin to the stiffener is confined to either a very short portion of the
flange width (something on the order of b/4), or directly under the web. In Figure 36 attention
is shifted to the interface stress distribution in the flange termination area. As in the previous
figure, there are four relations in each portion of the figure, one for the linear analysis and the
other three for nonlinear analyses. Only the interface peeling, ,, and shearing, 1., stresses
are shown in this figure. The most significant point to emerge from Figures 35 and 36 is a clear
illustration of the nonlinear interaction between the applied pressure and skin-stiffener inter-
face stresses. If a linear analysis is used, the normalized interface stress variation throughout
the flange termination region would be independent of the applied pressure. However, with
geometric nonlinearities included, significant changes in the characteristics of the stress dis-
tributions are observed. In a geometrically nonlinear analysis an increase in pressure tends
to flatten the peeling stress relation. Increases in pressure lead to a shift in the high stress
gradients in both the peeling and shearing stress relations toward the flange termination
point. As a result, it appears that increases in pressure lead to a reduction in the area under
the two stress relations. The possible significance of such behavior in the stiffener separation

context will be discussed latter.

As noted above, the variation in o, throughout the locai interface region is markedly dif-
ferent between the 1 and 20 psi pressure levels. This may be understood by considering Fig-
ure 37. In this figure the stress component o, along the collocation boundaries CD and EF (see

Figure 23) is plotted as a function of the distance through the thickness, y. Boundary EF cuts
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through the skin at x = — 3t,, whereas, boundary CD cuts through the skin and the flange at
x = + 3t,. It should be noted that on these boundaries o, = ¢, and 1,, = 1,, and that both o,
and t, are collocated. Nevertheless, ¢, is about two orders of magnitude larger than t,, and
therefore has the most significant influence on the local elasticity solution. As in previous fig-
ures there are four relations on each plot, one for the linear analysis and three for the non-
linear analyses at the 1, 10, 20 psi pressure levels. Concentrating for the moment on the
stress in the skin, Figure 37.a, the most important point to emerge is that at a low applied
pressure, the skin is loaded primarily in bending. As a matter of fact, in a linear analysis of
the stiffened plate which is loaded by pressure, the skin should be loaded in pure bending.
This is indeed evident from the line depicting the linear analysis resuits. For a linear analysis
at higher applied plate pressures, the relation would remain one of pure bending. However,
due to the geometric nonlinearities, the stresses in the skin change from a state which is
nearly pure bending, at low pressure, to a state at the high pressure level which is dominated
by stretching. At 20 psi the skin is entirely in tension. Turning to the skin-flange combination,
the normal stress distribution through the skin and the flange at x = + 3t, (Figure 37.b) shows
more complex characteristics. This is due to the abrupt change in materia! properties in going
from the skin to the flange. Nevertheless, o, becomes purely tensile at the higher pressure
level. Since the local region must remain in force equilibrium, this is expected, the stress
distribution in the skin-flange region balancing out the stresses in the skin away from the
flange. The above data suggest that the observed differences in the peeling stress distribution
for the 1 and 20 psi pressure levels are related to the state of inplane loading. That is, at low
pressure levels, for which the plate is loaded primarily in bending, the peel stress distribution
is high at the flange termination and reverses to become negative away from the terminus.
At high pressure levels, for which the plate is loaded primarily in inplane stretching, the peel
stress is reduced at the flange terminus and as a result does not experience as large a re-
versal away from the terminus, i.e., the peel stress distribution flattens with distance from the

terminus.
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To facilitate a better demonstration of this important nonlinear interaction between skin-
stiffener interface stresses and applied pressure, stress eigenfactors (SEF) are used. These

stress eigenfactors are defined as:

lim

K, = x ™M oy (x, 0; Ay [70.a]
x—=0
lim

Koy = x“ Moy (x, 054y [70.b]
Xx—0

where K, and K, are the peeling and shearing stress eigenfactors, respectively, and X, is the
first eigenvalue. As noted previously, values of — 1 < Re(X,) < O will lead to singular stress
characteristics near the flange termination vertex. It should be noted that in the field of frac-
ture mechanics the stress eigenfactor is commonly known as the stress intensity factor. The
stress eigenfactor is a measure of how rapidly the stresses become unbounded as the flange
termination point is approached. The factor can be used as a measure of the severity of the
interaction between the skin and the stiffener. Figure 38 shows the skin-stiffener interface
peeling and shearing stress eigenfactors as a function of the applied plate pressure. The
stress eigenfactors have been normalized by the peeling stress eigenfactor for a 1 psi linear
analysis. The influence of nonlinear effects is clearly illustrated in the figure. For a linear
analysis the stress eigenfactor would simply be in proportion to the applied pressure. How-
ever, it is clear that inclusion of geometric nonlinearities results in a different behavior. Spe-
cifically, the stress eigenfactors increase slower than the applied pressure. This is consistent
with the finding of Figure 36 and both figures point to the need for considering geometric
nonlinearities in the study of skin-stiffener interaction. More importantly, it would appear that
when conducting failure analyses of such structures, it should be recognized that a doubling
of applied pressure does not result in a doubling of interface étresses and to assume so would

be in error.
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Finally, the influence of geometric nonlinearities on the out-of-plane deformations of the
baseline plate configuration are considered in Figure 39. The figure consists of two portions:
one depicting the out-of-plane deformation along the symmetry line (x,0,0) and the other por-
tion the deformation under the web, colinear to the stiffener, along the symmetry line (0,0,2).
Each portion of the figure encompasses four relations, one representing a linear analysis at
1 psi pressure, and the other three corresponding to the nonlinear analyses at 1, 10, and 20
psi applied pressure. The out-of-plane displacement, v, is normalized by the skin thickness,
t,. The distance from the plate center (in the directions x or z) is normalized by the flange
half-width, b. Visible from Figure 39 is the large pillowing effect, the skin away from the flange
experiencing much larger out-of-plane deformations than the flange. This pillowing effect be-
comes more important with increases in pressure. As a result, geometric noniinearities have
an important role in determining the character of the pillowing. Specifically, for a linear
analysis at 10 psi pressure, the maximum skin deflection would be about 7t,, while the stiffener
deflection would be about 2t,. The nonlinear analysis at the same pressure level indicates that
the maximum skin deflection is only 2.4t,, while the stiffener deflection is 1.4t,. Therefore it is
clear that geometrically nonlinear effects actually reduce pillowing. The pillowing effect shown

here was observed experimentally in [10].

This concludes the discussion of the importance of geometric nonlinearities in the analysis
of skin-stiffener interface stresses. It has been shown that neglecting these effects may lead
to large errors in the calculation of plate response, particularly interface stresses. Next, at-
tention is given to an examination of the influence of stiffener geometry and material proper-

ties on skin-stiffener interface stresses.

4.2.1 Stiffener Parametric Study Results
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To establish the usefulness of the analysis method in the design of stiffened composite
structures, eight different stiffener configurations are studied. Table 2 lists the various stiffener
designs considered, and their designation, geometry, and lamination sequence. In the fol-
lowing sections each stiffener configuration is referred to by a nickname {second column in
Table 2). This nickname signifies what is unique about this stiffener relative to the baseline
configuration. The baseline configuration, configuration A, is always referred to by the nick-
name “baseline”. The baseline stiffener design was defined earlier but for the reference, it has
a web height h, = 1.5 in,, flange width 2b = 1.5 in., and flange thickness t, = 0.04 in. For
baseline, the flange and the web are constructed of a quasi-isotropic laminate with
(£ 45/0/90), layup sequence. The skin is orthotropic with a laminate layup of ( + 45/90,),. In
comparison to the baseline, the nickname “soft flange” was chosen for configuration B since
the flange layup resulted in transverse flange modulus E, = 3.83 Msi relative to E, = 8.05
Msi of the baseline configuration. All other stiffener nickname designations follow the same
logic. Lamina and laminate material properties are given in Appendix D. The structural anal-
ysis is conducted using the mesh shown in Figure 27. It should be noted that tapering of the
flange will lead to a slight reduction in the moment of inertia of the flange relative to the case
of a 890° flange termination angle. However, the structural analysis model is insensitive to the
influence of the reduced moment of inertia. For this reason configurations A, B, D, and F are
analysed using the finite-element discretization model for the baseline flange. Similarly, con-
figurations E, G, H, and | are analysed using the finite-element discretization model for the
thick flange. However, the substructural finite-element model for 90° and 15° flange termi-
nation angles are not the same, the difference reflecting the flange angle. The difference is
similar to the difference between Figures 4 and 5. Based on the results which were presented
in Figures 18 and 19, it is possible to use only one substructural finite-element analysis, for
example, the one for the 90° flange angle, to produce two local elasticity solutions, one for
90° flange termination angle and another one for 15° flange termination angle. However, 15°
is considered a shallow angle and it is not clear that one substructural analysis is all that is

necessary. Since an important part of the current investigation is related to the method de-
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velopment and verification, two separate substructure analyses are used. In a latter part of
this section data is presented to support the assertion that a single analysis would lead to

acceptably accurate results, but not as accurate as for less shallow angles, say 45°.

The results in the following section are presented in a form of skin-stiffener interface peeling
and shearing stresses throughout the localized region. Each figure represents a comparison
of the stresses between the baseline stiffener configuration and one of the other eight stiffener
designs. Stress data are given for 1 and 20 psi applied pressure and are based on a nonlinear
analysis. The low pressure represents the level at which linear and nonlinear analyses give
similar results. The high pressure level represents a pressure where geometrically nonlinear
effects become significant. The figures are useful in demonstrating qualitatively how interface
stresses are affected by the various stiffener parameters. However, they may be less helpful
quantitatively since they provide stress distributions rather than one numerical value which
can be applied to design, failure, or optimization procedures. The calculation of a numerical
value is done in the last part of this chapter, where the performance of each stiffener config-

uration is evaluated against the baseline stiffener design.

Figure 40 shows a comparison of skin-stiffener interface peeling and shearing stresses
between the baseline and the "soft flange” configurations. It appears from the figure that re-
ducing the transverse flange modulus, E, ., more than 50% has little effect on the peeling
stress. It does tend to slightly reduce the shearing stress near the flange vertex. Figure 41
details the interface peeling and shearing stresses for both the baseline and the "short web”
configurations. Evident from the figure is that shortening the web leads to a significant re-
duction in both the peeling and shearing stresses. At the high pressure, the peeling stress is
essentially zero, while the shearing stress, although reduced, is still measurable. Since the
softer stiffener configuration resuiting from the short web leads to lower bending gradients in

the flange termination region, the reduction in the peeling stress is somewhat expected.
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Figure 42 illustrates the character of the peeling and shearing stresses for the baseline and
“tapered flange” stiffener configurations. Tapering the flange seems to have a considerable
effect on the interface peeling stress distribution. At both low and high pressures it appears
that tapering tends to distribute the stress as a tensile stress over a larger portion of the
skin-stiffener interface, rather than having a stress reversal accompanied by a steep gradient.
This, in turn, may reduce the separation tendency of this particular stiffener design. Tapering
of the flange seems to have a smaller influence on the interface shearing stress distribution.
In general it tends to slightly increase 1, for both low and high pressure levels. Figure 43
demonstrates the influence of thickening the flange on the skin-stiffener peeling and shearing
interface stresses. Generally speaking, thickening the flange tends to increase the interface
peeling stress, increasing the gradient near the flange terminus and increasing the reversal
away from this point. On the other hand, thickening the flange has a mixed effect on shearing
stress. At high pressure the shear stress increases, while at low pressure the shear stress

increases or decreases, depending on spatial location.

Figure 44 delineates the effect of softening and tapering the flange at the same time. An
examination of Figure 42 and Figure 44 reveals that the peeling stress distributions for the
tapered flange configuration and for the soft and tapered flange configuration are very similar.
However, in the latter case the stresses appear to be lower, reflecting the influence of the
combined changes to the baseline case. The shearing stress distribution seems to be lower,

as compared to the baseline design, near the vertex and slightly higher away from the vertex.

Figure 45 displays a comparison between the baseline configuration and one for which the
flange was thickened and tapered. If the results of Figure 45 are evaluated in the context of
the results of Figure 43, it may be concluded that tapering the thick flange improves the dis-

tribution of the peeling stress along the interface, but has a smaller effect on the shearing

stress distribution.
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Figure 46 depicts the influence of both thickening and softening the flange on the peeling
and shearing interface stresses. Again, if one examines the results of Figure 46 in light of the
data which were presented in Figure 43, it appears that softening the thick flange has little
influence on the state of interface stresses as compared to the “thick flange” design. There-
fore, the discussion offered for Figure 43 is also relevant for Figure 46. These results are also
consistent with the results of Figure 40, where the baseline stiffener configuration was evalu-
ated relative to a "soft flange” stiffener design of the same geometry. Finally, Figure 47 dem-
onstrates the effect of thickening, softening, and tapering the flange on skin-stiffener interface
peeling and shearing stresses. The following observations are made in connection with
Figure 47. Softening the tapered thick flange does little to change the peeling stress distrib-
ution in the local region (compare Figure 45 with Figure 47). However, tapering the soft thick
flange does substantially reduce the peel stress (compare Figure 46 with Figure 47). Finally,
tapering the soft thick flange substantially reduces 1,,. Based on the results of Figure 47 and
the other figures, it can be stated that the single most important influence on the intérface

stresses is flange tapering. Softening the flange and reducing the thickness have considerably

less influence.

At this point it is of interest to determined if the use of a single substructural analysis is
sufficient for obtaining a local elasticity solution for both 90° and 15° flange termination angles.
In section 2.6 it was shown that for the 90° and 45° flange termination angles, the local
elasticity solution could be obtained from one substructural (or global) finite-element analysis
for either 90° or 45° flange termination angles. However, some concern was raised as to
whether these results are applicable for a very shallow flange termination angle. The resuits
illustrated in Figure 48 provide insight into this. Figure 48 replicates the previous study of the
45° and 90° flange termination angles (Figures 18 and 19) but considers 15° and 90° angles
instead. In Figure 48 the the pressure loaded stiffened plate and clamped boundary conditions
used in the above parameter study are considered. The two stress components of interest,

o, and t,, are illustrated. The solid line in each portion of the figure represents the local
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elasticity solution obtained from the collocation of stress data from the 90° flange termination
angle substructure finite-element analysis. On each portion of the figure there are two solid
line relations; one iliustrates the local elasticity solution for a 90° flange, and the other illus-
trates the solution for a 15° flange. These curves are labeled "80° flange” and "15° flange”,
respectively. Similarly, the dashed lines on each portion of the figure represent the local
elasticity solution obtained from the collocation of stress data from the 15° flange termination
angle substructure finite-element analysis. There are two dashed line relations on each por-
tion of the figure; one representing the local elasticity solution for the 90° fiange, the other
representing the local elasticity solution for the 15° flange. if the two curves which are labeled
”90° flange” (i.e., the dashed and the solid lines) coincide, it is possible to use either the 90°
or 15° finite-element analysis results to produce the same 90° flange elasticity solution. Simi-
larly, if the two curves labeled "15° flange” coincide, the use of either 90° or 15° flange ge-
ometry finite-element analysis results to produce a 15° flange elasticity solution is justified. In
general, the results of Figure 48 indicate that the level of agreement between the dashed and
the solid lines for the same local elasticity solution produced by two different substructural
analyses is not as good as the one observed in Figures 18 and 18. From a stiffener failure
analysis point of view {(discussed in the next section) the results of Figure 48 may be close
enough. The worsening in agreement between the two approaches is directly related to the
shallow flange termination angle, 15°. It is reasonable to expect that at very shallow flange
termination angles, modeling the flange tapered portion in the substructural analysis is im-
portant. In addition, the resuits of Figures 18 and 19 are based on a linear analysis, whereas
the present results are based on a geometrically nonlinear analysis. It is possible that the
interaction between geometry and flange-skin interface response are more significant in the

nonlinear range.

Lastly, a significant point of interest is the out-of-plane deformations observed in the various
stiffened plate configurations. Figure 49 illustrates the plate deformation v at the center (z=0)

as a function of transverse distance, x, for four stiffener configurations. These configurations
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are: the baseline case, the short web case, the thick flange case, and the soft flange case.
The figure demonstrates some important aspects of skin-stiffener interaction. Initially, at low
pressure levels, all skin-stiffener configurations show a pillowing effect. At high pressure level,
the short web stiffener configuration does not pillow. The other 3 stiffener configurations,
however, exhibit pillowing at high pressure levels. However, there are differences among
these three cases. The thicker flange stiffener geometry results in nearly a rigid body trans-
lation downward at the flange, i.e., v in the flange is practically independent of x. The soft
flange, on the other hand, bends, its downward deflection increasing with increasing x. The
baseline case represents a deformation characteristic between these two extremes. It should
also be noted that the plate with the soft flange deflects less than the plate with the baseline
flange. This is a consequence of the fact that in the soft flange configuration the 90° fibers in
the baseline flange are converted into 0° fibers. Since it is assumed that the flange and web
are of the same laminate, the switching of the 90° fibers to 0° fibers stiffens the web, thereby

decreasing the overall deflection of the plate.

4.2.2 Stiffener Design Performance Evaluation

in the above, the influence of stiffener design parameters on skin stiffener interaction have
been examined from a qualitative point of view. In the following section, these effects are
studied quantitatively. Interest here is in presenting numerical values by which a particular
skin-stiffener design may be judged in terms of its tendency to experience skin-stiffener sep-
aration failure. The results are presented relative to the baseline configuration. In the results
to be presented, two stress parameters are used, the stress eigenfactor {SEF), mentioned

previously, and the average stress factor (ASF).
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The peeling, K,, and shearing, K,, stress eigenfactors, were defined by eq. 70.a and 70.b,
respectively. In the present investigation the SEF concept is used as a measure of the severity
in interaction between the stiffener and the skin, rather than as a failure criteria. A stiffener
design which leads to a high SEF, relative to a baseline configuration, will be judged as having
more tendency to separate. Similarly, a stiffener configuration which produces a lower SEF,
relative to a baseline design, will be judged as having less tendency to separate. For example,
if tapering the flange of the baseline configuration leads to lowering the SEF, then reducing the
stiffener termination angle will be judged as a design improvement for the stiffener. Here care
must be taken in evaluating the results. Changing one stiffener parameter my lead to a re-
duction in K, but an increase in K,, or vice versa. This raises the question of which SEF is
more significant in the initiation of skin stiffener separation K, or K., Here it can only be said
that epoxy resins and adhesives usually exhibit higher shearing strength relative to peeling
strength. Therefore, it is reasonable to speculate that K, will be more important in determin-

ing the tendency for skin stiffener separation.

While the concept of a stress eigenfactor has been used successfully in the field of fracture
mechanics (i.e., stress intensity factor) in isotropic materials as a parameter by which the in-
itiation of crack growth and fracture can be determined, this concept has proven to be less
useful in composite materials. This may be related to the heterogeneity of the material and the
complex nature of crack propagation. in the skin-stiffener separation initiation context, there
is no evidence for the existence of crack at the flange terminus prior to failure. Therefore, the
use of the average stress factor in determining skin-stiffener interface strength may be more

appropriate. For the present problem, the average stress factors are defined by;

= 1 ¢ (% .

s, = 3 ,:;1 for oy (x, 0,2 dx [71.a]
= 1 S 2 :

Sy = & |§1 for Tty (X, 0.5 A) dx [71.0]
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where }, is the i'th eigenvalue in the truncated eigenfunction expansion. The parameter a, is
the distance of integration along the flange interface from the flange terminus. Failure is based
on critical values for S¢' and Sg for a particular material. These must be determined exper-
imentally. The average stress criteria was first proposed for use in composite structure ap-
plications in [45]. In that study the criteria was applied to the calculation of laminates strength
which contained holes and notches. More recently this concept was used in the investigation
of the onset of delamination in composite laminates [46]. In that study the average stress cri-
teria produced fairly good agreement with experimenta! results. The investigators postulated

that the onset of delamination was strictly controlled by interlaminar transverse strength and

ao
Y
thickness) and S¢" was equal to the transverse strength of the composite. Due to the lack of

therefore used S, only. The integration length was taken as = 1 (t, being the lamina
experimental data, the average stress criteria in the present investigation is used as an ad-
ditional parameter by which the different stiffener designs are evaluated. It is anticipated that

both the SEF and the ASF will produce qualitatively similar resulits.

Finally, it is recognized that skin-stiffener designs cannot be judged solely by their tendency
to separate. Therefore, in addition to the stress parameters, the maximum skin and the
center-of-plate out-of-plane deformation are given. This is to point out that a particular
stiffener design may lead to a 50% reduction in K, and K,, but an increase of 2 to 3 times in
the out-of-plane deflection. Such designs would be desirable from the skin-stiffener separation

stand point, but may be unacceptable from the structural deformation point of view.

Table 3 presents quantitative data relevant to the stiffener parametric study. The data given
in the table is based on a 1 and a 20 psi pressure nonlinear analysis. The first column lists the
stiffener configurations by their nicknames. The second column gives the two pressure levels.
Columns 3 and 4 give the peeling and shearing stress eigenfactors, K, and K. Columns 5 and
6 provide the peeling and shearing average stress factors, S, and S,,, for an integration dis-
tance of a/t, = 0.0625. This value of a, corresponds to one lamina thickness for the materials

considered here. Finally, columns 7 and 8 list values for the maximum skin and the center-
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of-plate out-of-plane deflections, v, and v,, respectively. All values which are given in Table 3
are normalized by the values calculated for the baseline configuration. Table 3 presents an
enormous amount of data that can be compared in ways that are too numerous to be done
here. However, two types of comparisons can be done, namely comparison resuiting from
softening, tapering, and thickening the baseline flange, and softening and tapering the thick

flange. These comparisons will be made in the following paragraphs.

Examination of the SEF data lead to the following observations: softening the flange (i.e.,
reducing the transverse modulus E) tends to increase K,, in both the baseline and thick
flanges. This increase is more significant in the thick flange, as can be seen by a comparison
between the SEF for the “thick flange” and the "thick and soft flange” configurations. On the
other hand, softening the flange leads to a reduction in K, in both the baseline and thick
flanges. For the soft flange, the reduction is 20% relative to the baseline case. Shortening
the web, to half the height of the baseline configuration, results in drastic a decrease in both
the peeling and shearing stress eigenfactors. Though not as dramatic, tapering the flange
leads to a 30% or more reduction in K, in the baseline case. For the thick flange configuration
tapering leads to even greater reduction in K,. However, this same design change leads to
large increases in K, Thickening the flange brings about an increase of up to 50% in both K,
and K,, at 20 psi pressure. This increase happens even though the values of the engineering
constants are the same for the two flanges (see Appendix D). Softening the tapered flange
helps reduce K, and K,, by a moderate amount. This reduction amounts about 15% decrease
in K, and K,,, respectively, for the thick flange at 20 psi pressure. A smaller decrease is ob-
served at a lower pressure and for the baseline flange configuration. On the other hand, ta-
pering the soft flange substantially reduce K, in both the baseline and thick flanges
configurations. This design change brings about a 50% reduction in K,, for the baseline flange
at both 1 and 20 psi pressure. The same design change leads to about 65% reduction in K,
at 1 and 20 psi pressure in the thick flange configuration. However, tapering the soft flange

leads to a drastic increase in the shearing stress eigenfactor in both the baseline and thick
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flange configurations. This increase is similar in magnitude to the increase due to tapering
alone. Based on the SEF data presented, the following general comments can be made: (a)
Softening the flange leads to slight increases in K, and moderate decreases in K,,; (b) Taper-
ing the flange brings about a drastic reduction in K, but a substantial increase in Ky, (c)
Thickening the flange leads to up to a 50% increase in K, and K,,; and (d) Shortening the web

heights to half the baseline web height results in nearly 50% reduction in both K, and K,,.

The average stress factor produces results which, for the most part, are consistent with the
SEF data. However, there are some inconsistencies.These are discussed next. The ASF, unlike
the SEF, indicates that softening the flange leads to slight decrease in peel tendency. How-
ever, the difference between the two measures is quite small, 5% increase in K, verses 8%
decrease in S,. Another inconsistency relates to the values of K,, and S, for the "thick & soft
flange” configuration at 1 psi pressure. For this configuration K,, is 4% higher than the
baseline design, whereas S, is 10% lower. However, it should be noted that softening the
thick flange produces the same trend in both the SEF and the ASF. That is, both K, and S, in-
crease due to softening, whereas K,, and S,, decrease due to softening. Finally, in the SEF
calculation, tapering the flange leads to an increase of 3 to 4 times in K,, relative to the
baseline configuration. The ASF shows a decrease in S, relative to the baseline stiffener de-
sign. As a matter of fact, all the stiffener configurations except the “thick flange” and the "thick
& soft flange” designs produce S,, which is smaller than the baseline case. These results are
consistent with the observations made in Figure 40 through Figure 47. The average stress,
of course, will depend on the distance of integration, a,. For example, if the "tapered flange”
configuration, Figure 42, is considered, it is obvious that extending the integration distance to,
say, a,/t, = 1 would result in different values for both S, and S,,. This is what makes the SEF
so useful in evaluating the effects of various stiffener parameters on skin stiffener interaction.
The SEF is independent of any objective parameter such as a,. On the other hand, the ASF
may be useful in determining the skin stiffener separation failure initiation. This can only be

achieved with experimentally determined value for S¢* and sy,
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Finally, an examination of the out-of-plane deflections for the various stiffener designs
shows that, relative to the baseline case, all configurations, except for the "short web” design,
give the same or smaller out-of-plane deflections for the center-of-plate and the skin. Although
the “short web” stiffener design leads to a substantial reduction in both the peeling and
shearing stresses in the local region, it results in a large increase in the out-of-plane de-

flections.

In summary, if the stress data is considered together with the out-of-plane deflections, it
may conciuded that: (a) If a thick flange is used to increase structural rigidity, tapering and
softening the flange will substantially reduce the risk of premature skin-stiffener separation;
(b) Softening the flange (i.e., putting more 0¢ fibers in the z direction) leads to a decrease in
the center-of-plate out-of-plane deflection but a relatively small gain as far as interface
stresses are concerned; and {(c) Tapering the flange results in a small or nonexistent effect
on the out-of-plane deformation but substantially reduces the risk of premature skin-stiffener

separation.

This concludes the quantitative evaluation of the performance of stiffener design parame-
ters. In the next chapter some conclusions are put forth and recommendations for future re-

search, as related to skin-stiffener interaction, are discussed.
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5. Conclusion and Recommendations

5.1 Concluding remarks

In the following chapter, the work conducted in the present study is summarized. In addition,

some recommendations for future research are highlighted.

As stated in the introduction, the objective of the investigation was to.develop an analytical
method by which skin-stiffener interface stresses could be accurately calculated. Particular
attention was given to the flange termination region, a region where the stresses are high due
to geometric and material discoﬁtinuity associated with this locality. Moreover, the stresses
in this region are generally difficult to compute and so extra attention was given to this area
of the interface. Furthermore, since stiffened panels are most commonly designed to operate
at the postbuckling range, the analysis had to incorporate geometrically nonlinear effects.

Considering the above, the following objectives were set:

{a) The analytical model should accurately represent the state of stress near the

point of geometric and material discontinuity.
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(b) The analysis should include geometric nonlinearities.
{c) The procedure should be applicable to general stiffened composite panels.
(d) The model should be sensitive to various skin and stiffener design parameters,

such as stiffener geometry, and stiffener/skin material architecture.

The method developed addressed all of the above objectives. In Chapter 2 the first objective
was addressed. This led to the development of a local-global analysis procedure, later called
the local-substructure analysis procedure. The developments in this chapter were for ge-
ometrically linear analyses. The local elasticity analysis was based on the eigenvalue expan-
sion of the stress function. The eigenvalue expansion was applicable in the flange termination
region and as a result, the stresses were known to within a set of arbitrary, but unknown, co-
efficients which were associated with the eigenvalues. For a particular skin-stiffener problem,
these coefficients were determined from the stresses obtained from a combination of a global
finite-element analysis of the entire skin-stiffener cross-section and a collocation scheme.
Once these constants were known, the stresses in the localized region could be uniquely de-
termined. The local elasticity solution provided a rigorous solution which accurately charac-
terized the material and geometric discontinuities associated with the flange termination
region. Away from this region the global finite-element analysis produced accurate skin-
stiffener interface stresses. The last part of Chapter 2 was devoted to the study of conver-
gence and accuracy of the local elasticity solution. The accuracy issue was investigated by
comparing the local elasticity solution with finite-element results for which the mesh was re-
fined twice. The use of finite elements for comparison was due to the lack of another analysis
of this particular probiem. In general, it was found that the local elasticity solution scheme
produced a very accurate interface stress representation in the flange termination region.
Convergence of the local elasticity solution was studied by varying the number of eigenvalues
in the truncated eigenvalue expansion, and by varying the number of the coliocation points

on the local region boundary. Generally, it was found that the use of 10 to 15 eigenvalues, in
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the eigenvalue expansion, and 100 collocation points resulted in a converged local elasticity

solution.

in Chapter 3 the second and third objectives were addressed. In the first part of the chapter
the local elasticity solution was extended to include geometrically nonlinear effects. Here the
condition of small strains but finite rotations was assumed. )t was shown that under these
conditions, in a local region which undergoes spatially uniform rotations, the local elasticity
solution procedure developed in Chapter 2 was valid, provided it was applied in the deformed
body configuration. This approach was applied 1o an actual stiffened composite plate structure
where both geometrically linear and nonlinear analyses were considered. The analysis of the
entire structure consisted of three steps: a structure analysis, a substructural analysis, and a
local elasticity analysis. First a structural level analysis of the entire stiffened plate was con-
ducted using finite-element plate elements. Next, a typical cross-section region in the stiffened
plate structure was isolated and a three dimensional finite-element analysis of the cross-
section was performed. Finally, the stresses from the substructural analysis were coupled with
a boundary collocation scheme to produce a rigorous elasticity solution in the flange termi-

nation region.

Finally, in Chapter 4 both the third and the fourth objectives were addressed. In this chapter
the influence of geometric nonlinearities on skin-stiffener interface stresses was evaluated.
The interest here was focused on determining what error would be encountered if a geomet-
rically linear, rather than a geometrically nonlinear analysis was used in the computation of
skin-stiffener interface stresses. in general, it was found that in flexible stiffened skin struc-
tures, which exhibit out-of-plane deformations on the order of magnitude of 2 to 4 times the
skin thickness, geometrically nonlinear effects in the calculation of interface stresses are very
important. That is, the use of geometrically linear analysis, rather then nonlinear anaiysis, can
lead to considerable error in the computed interface stresses. in the last part of the chapter
the influence of stiffener design parameters on the skin-stiffener interface stresses was

studied. Both geometric and material stiffener parameters were considered. The stiffener

5. Conclusion and Recommendations 133



parametric study included eight different stiffener configurations. In general, it was found that
the local elasticity analysis was sensitive to the various stiffener design changes and provided
very useful information by which these designs could be evaluated against a baseline stiffener
configuration. The findings suggest that tapering and softening the flange simultaneously
tends to reduce interface peeling stress in the local flange termination region. However, these
same design modifications tend to increase the shearing stress in this locality. Since it is
believed that the stiffener separation failure is strongly related to the state of peeling stress
at the flange termination region, the use of flange tapering and softening may prove benefici-
ary in this respect. Finally, use was made of the peeling and shearing stress eigenfactors
(SEF) in evaluating the performance of the various stiffener designs against a baseline con-
figuration. Another stress parameter used was the average siress factor (ASF). Both the SIF
and the ASF could be calculated in a closed form from the truncated eigenvalue expansion

elasticity solution.

As summarized above, all the objectives were addressed by the method developed in this
study. The results demonstrated that this analytical tool is accurate and sensitive in solving

skin-stiffener interface stress problems in actual stiffened composite skin aircraft structures.

5.2 Recommendations for future research

The method developed produced accurate and useful skin-stiffener interface stress calcu-
lations for stiffened composite skin aircraft structures. However, the analytical model was
based on certain assumptions which restricted its application to the most general skin-
stiffener interface problems. in this section recommendations are made related to the capa-
bility enhancement of the current model to a more general one. Other recommendations are

related to analysis cost reduction, and to analytical and experimental correlation of stiffener
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separation predictions. The recommendations are divided into two categories, one which re-

lates to analytical development and the other is related to experimental considerations.

5.2.1 Analytical Recommendations

(a) In the present investigation the skin and stiffener were restricted to symmetric balanced
laminates. This, in conjunction with the integrated laminate properties assumption, led to
orthotropic material constitutive relations. As a result, material stretching and bending and/or
twisting coupling effects were ignored. For most stiffened composite skin aircraft structures
such a simplification is justified. However, there are some cases in which the use of unbal-
anced or unsymmetric laminates for the skin and/or the stiffener is desirable. Hence, to render
the present analytical tool more general, the local elasticity solution should be extended to
include more general material constitutive law. It should be noted that for more general ma-
terial characteristics, the two stress functions, F(x,y) and ¥(x,y) are coupled. However, in
general, the solution approach is the same (see refs. 21 and 22). In that regard, it should be

mentioned that for the cases studied here, 1., and 1, were identically zero.

(b) In the present investigation it was assumed that the stress components did not vary with
z. This restriction is justified for most instances over short distance in the z direction where
the local elasticity solution is applied. However, there are some cases in which the stresses,
and in particular ¢, , do vary rapidly with z. In such cases the local elasticity solution can be
modified to include a linear variation in o, with z (see ref. 22). The solution procedure to such

a case is similar to the one presented here.

(c) Finally, in the present analysis procedure use was made of the substructural analysis
of the skin-stiffener cross-section. The primary function of this step was to generate the

boundary conditions for the local elasticity analysis, as well as for the computation of skin-
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stiffener stresses outside of the local region. If the sole purpose of this step is only to generate
boundary conditions, it would be advantageous from a cost standpoint to eliminate this step.
One way by which the above may be achieved is by using laminated plate theory to compute
the stresses on the local region boundaries using the inplane loading from the structural
analysis. By doing so the local elasticity analysis can be incorporated as a post-processor in

a structural analysis program.

5.2.2 Experimental Recommendations

(a) The lack of experimental data makes it impossible to evaluate the usefulness of the
present analytical approach in determining the initiation of skin-stiffener separation failure.
Therefore, it is recommended that stiffener-skin specimens configurations will be tested to

failure under various loading conditions to obtain skin-stiffener interface strength, Si and Sg.

(b) Once critical values of the failure parameters are known, they can be used as input to
make analytical failure predictions of actual skin-stiffener structures. For example, using the
experimental devise describe in [10] for testing single stiffener pate configuration subjected
to uniform transverse pressure, a comparison can be made between analytical prediction and

experimental results.
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Appendix A. Material Constitutive Relations

A.1 Transformation Relations

The geometric relations between the lamina principal 1-2-3 coordinates system and the
laminate x-y-z system are depicted in Figure A.1. The principal lamina 1-2-3 material coordi-
nates correspond to the transverse, normal, and longitudinal to the fiber directions respec-
tively. The angle ¢ measures the angle between the 3 and z axis, a positive rotation
corresponding to rotation of the fiber from the z axis to the x axis. The well known lamina

constitutive relations in the 1-2-3 system are written as follows:

i
€1 S17 812 S3 0 0 O T 04
€ Sy Sp» S 0 0 O 02
€3 Sg1 Sz S;3 O O O O3

= : [A1]
Y23 0 0 0 844 0 0 To3
Y13 0 0 0 0 S55 0 T43
'Y1 2 0 0 0 0 0 866 11 2

L -
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Figure A.1. Lamina and Laminate Material Coordinates Nomenclature.
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where,

_ 1 P
S" = —E—| ' I = 1,2,3 y
5 = I i, =123 *
|] ?‘I- ) | ) l - 1y s | j [
1 1 1
S = — , S = — , S = — ,
“ Gas % Gy % Gy2
and, §; = §;. In inverted form the lamina constitutive relation in the 1-2-3 system takes the
following form;
B 9

o Cyp C2 C3 0 0 O €1

0, Cia Cp Gy 0 0 O €

O3 Cia C3 C3 0 0 O €3

= , [A.2]

Tos 0 0 0 C44 0 0 Y23

T13 0 0 0] (#] C55 0 Y13

T1 0 0 0 0 0 GCg Y12
where,

2
c.. = 5283 — Sy Con = 12513 T SpaSn
11 S ' 23 T S '

2
S11833 — Si3 812873 — 8435y

Co S + Cia S '
2
c S11Sp — 83 C.. = 513523 = S125s;
33 S ' 12 S '
C, = —— , i = 456 ,

Sy
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and,

- 2 2
S = 8448;853 = Syy83 — 85 8% —

2
S33 812 + 25428438y,

The transformation of the stresses and the strains from the 1-2-3 coordinate system to the x-

y-z system leads to;

The transformation matrices for the stresses, [T,] and [T,], are given by;

[T1] =

and,

[Tg] =

o O O O

o o o o

o

-=mn

[t.]o, .

[T2] _gx

o

-n

-2mn
0
2mn
0
(m? = n?

0

—mn

mn

(m? - n?)

[A.3.a]

[A3.b]

[A.4.a]

[A.4b]

Combining eqs. A.1 through eq. A.4, the lamina constitutive relations in the x-y-z coordinates

system my be written as;
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g = [Slo, ., [A.5.a]
o, = [Cl%, . [A5.]

The coefficients in the compliance matrix, [S], are

S, = m*S,, + mn?(2S, + Sy + n*Sy ,

S, = Sy = mS,, + mS, ,

Sy = Sy = (M* + n9S,y + mn¥(S, + Sy — Sg)

Ss = Sy = MN(2S, — 25, + Sy + Mn*(28y, — 28, — Sg)
S = Su

S, = S, = mS,, + mS, |,

Ss = Sp = 2mn(Sy— Sy

S = nS, + min?(2S, + Sy + m*S,
S = Seg = MPN(2Sy — 28, — Sy + MN*(2S, — 28y + Sy
Su = M8, + n?Sy
w = Su = mMn(Sy = S .

Ses = 2m2n?(2S,, — 2S5, — 48;; — Sy + (M* + n9S; ,

Seg = n?S, + m?Sy
and all other coefficients are zero. The coefficients in the lamina stiffness matrix, [C] are
given as;

Cy = mM‘C, + m2n3(Cyy + 2Cy) + n*Cy

C, = Cy = miC, + n2Cy ,

E13 = Cy = (M + n9)Cy + m?n?(Cy + Cy — 4Cy)

Cs = Cy = m¥n(Cy — Cy) + mn¥(Cyy — Cy))

Cyu = Esz = n?C, + mCy, ,
Cs = Eaz = mn(C,p— Cp)

Cihy = n*Cyy + 2m2n?(Cyy; + 2Cy) + MG,
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Cs = Ciy = mn*(Cyy — Cy) + MN(Cyy — Cp)) — 2mn(m2 — n¥) Cy
C. = mC, + n?Cq |,

Cs = Cy = mMn(Cy — C)

Css = 2m2n2(Cy + Cyy — 2C,, — 2Cg) + (M* + N9 Cqy

Ce = N2C, + m2Cq .

and all other coefficients are zero.

A.2 Integrated Material Properties

The integrated laminate properties are obtained by smearing the individual lamina prop-
erties throughout the thickness of the laminate. This is achieved by defining an average stress

through the laminate thickness, h, i.e.,
2 1 sh >
Ox = 1= foum Ox 9y . [A6]

Substitution of eq. A.5.a into eq. A.6 leads to the laminate constitutive relations:

[ |
Ox Aip Az A3 0 0 O Ex
O’Y A21 A22 A23 0 0 0 Sy
GZ A31 A32 A33 0 0 0 €7
= , [A7.4]
Ty 0 0 0 Ay 0 O Yyz
T 0 0 0 0 Ag O -
TXY 0 0 0 0 0 Ass ‘ny

where the overbar is dropped from the stresses for convenience. The laminate stiffness

components A; are given by,

Appendix A. Material Constitutive Relations 146



| L -
Ay = 1 §1 Cij (Y — Yk-1) [A.7.b]

n being the number of laminae and y, and y,_, are defined in the same manner as in classical

laminate theory (CLT). in inverted form,

Ex a4 a;2 33 0 0 O Oy
Ey ajp ayp ag 0 0 0 Oy
.2 \_ | M3 333 0 0 0 0, [A8]
Tyz 0 0 0 ay 0 0 Ty
Yz 0 0 0 0 ass O Tyz
Yxy i 0 0 0 O 0 ag Txy

It should be noted that although each individual lamina is considered to be anisotropic, the
laminate constitutive law is that of orthotropic material. The coefficients of the laminate com-

pliance matrix , a,, are given by;

2
a An Az — Ay = ApA13 — Axp Ay
11 A v 83 T A '
2
a, = DA — A _ ApAx — AppAy
22 A ' a13 - A )
2
an = D11hzn — Ap = AzAyz — ApAg
33 A ! a12 - A t
1 .
q = ) = 415y )
fi A” | 6

were,

= 2 2 2
A = AAnAg — A Ay = ApAlg — AygAlp + 2ApAA
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Appendix B. The Eigenvalue Problem

The eigenvalue problem for A and 3 is developed in this appendix for a general bimaterial
composite wedge depicted by Figure B.1. The traction-free wedge boundaries are located by

the angles a, and a, in material 1 and 2, respectively.

B.1 The 6 Eigenvalue Problem

The set of equations which form the eigenvalue problem for § is written symbolically as,

[Qa.0:81D = 0 , [B.1]

where the coefficients q; are given by,

qy = (cosa, + iv" sina)®*' , q;, = (cosa, — iv" sina)p*

Qi3 = Gy = G = 0p = 0,
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Figure B.1. General Bimaterial Composite Wedge Geometry.
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Gn = (cosa, — iv? sing)**! | g, = (cosa, + v sina,)* ,

Q31 = Q3 = 1, Q3 = Qg = —1,
Gt = — G = 0", Qu = - qu = n?
with,
ot =\/5§2 Cok=12
BS
and,

The eigenvector , 5 is given by,

Q)

ol
0

ze) [B.2]

where the two eigenvectors, D" and D are related to material 1 and 2, respectively. Due to

the boundary conditions, the two vectors are related by an equation of the form

" 11
=y =(2)
o' = D , [B.3.a]
{ ‘" -n“’] [ 7@ —n‘z’]

leading to,

Mm® + 1% @@ =]

p@ = 1 " [B.3.b]

2n(2) m(2) - n(1)) m(2) + Tl(‘I))
The reduced eigenvalue problem takes the form,
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[(a.0;81D0" = 0 , [B.4]

where,

ju = (cosa, + iv" sina)*t | j, = (cosa, — iv"® sina,)t*! ,

i = 2111(2, [(n® + ni)(cosa, — iv® sina)p*t + (@ — q)(cosa, + iu® sinap+1]
i = 2:](2) [(n® - M) (cosa, — iv? sina)*! + (n@ + n)(cosa, + iv? sina,)s*+'] ,

B.2 The \ Eigenvalue Problem

The eigenvalue problem associated with A is written symbolically as,

[Afenann)1C = 0 | [B.5]
where,
a, = (cosa; + pf” sina)**? | a,., =0,
ay = (W'cosa, — sina)(cosa, + pf’sina)+? | Qu+g = 0,

ay = 0, a+g = (cOS0, — pufPsinay,)t+?

Ay = 0 ' a‘(k.'_) = (u'LZ) COS% + sin az)( cosaz - p‘tz) sin az)(k+1) ,

a = 1, ageg = —1 ,
ag = P, ageg = —ufP
a, = pf! , a4 = —pP
ag = qf" , Ay = —qff

where k = 1,2,3,4, and p, and q, are defined by
- 2
P = B + Bz
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B2z
U = Bram +p

In addition, p, has one of four unique value given by the characteristic equation
2 4
P2o + (2B12 + Beg) ik + Biymg = O

Such roots do exist and they are always complex or imaginary.

The eigenvector E is define by,

)

¢ = c‘”’ , [B.6]

where, the C and C® are two vectors associated with material 1 and 2, respectively. Due to

the boundary conditions, the two vectors are related by an equation of the form

[EMICM = [e®1c® | [B.7]
where,

efk = 1, ehk = ), el = p . efl = al) =12 k=1234
The relation between the two vectors is then given by,
@ = [r1ch | [B.8]
where,
[r] = [E®37'e™] ,

is the vector transformation matrix. This leads to the reduced eigenvalue problem associated

with C® only. The problem may be written as
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[ Hay az ) 1CY = 0, [B.9]
where,

h” = a” .i = 1,2 ,j = 1,2,3,4 '
4 . .
h” = 2 a‘(k+4) tk' = 3,4 W= 1,2,3.4 ,
k=1 .

where t, are the elements of the transformation matrix [T].

B.3 Eigenvector Representation

The eigenvectors 5,, and E,, associated with the n* eigenvalue, given by eqs. B.2 and B.6,
respectively, are of arbitrary magnitude. To eliminate some of the arbitrariness the vectors
are normalized according to the following procedure. Letting DY} = D, (—1:

1
, —=) leads
V22

to,
[B.10]

where,
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and D, is an arbitrary constant, D, = d, + id’,. If 3 is real, then the normalization of the vector

D® is achieved by letting d{y = 1.0 and D, = d,. The eigenvector associated with material

2, BS,”. is obtained from the vector transformation eq. B.3.b.

In a simitar manner letting,

1y _ 1
) = ¢ (—

,—=)
Vo2l

leads to,
()
1
M = ¢, ) ci’f; ‘> [B.11]
4 |
=y
where,

4
Csn) =

and C, is an arbitrary complex constant, C,=c, + ic’,. As before, if A is real, then
cl) = 1.0and C, = c, is a real constant. The eigenvector Eﬁ,z’ associated with material 2 is

obtained via the vector transformation eq. B.8.

The unknown coefficients d{y and c{f ,1 = 2,34 are obtained by eqs. B.4 and B.9, re-
spectively, by eliminating the first row and first column from matrix {J] and [H], respectively.
Thus, for both § and A there is one complex undetermined coefficient associated with each

eigenvalue.
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B.4 Eigenfunction Expansion Representation

The eigenfunction expansion representation of F® (x,y) and ¥ (x,y) will differ depending
on whether the & and A are real or complex. As noted before, if 5 and A are complex they will
occur in complex conjugate pairs. In the following section the proper functional form for a real
and complex eigenvalue is discussed. Only detailed development for Fi* (x,y) is shown since

the form for ¥ (x,y) is identical.

Real Eigenvalue

For a real eigenvalue ,
A = vy (real)

The stresses associated with Fi® (x,y) can be written as,

2 -
o = kz_:1 (AcGik + A+aGyd . i = xyxy [B.12]
where,
Ak = ak + ia'k
Gy = gk * igik

and G, is the conjugate of G, . In addition g,, and g’ are unique functions of r and 0., as

shown next. Considering o, for example,

4
o, = I AZh . [8.13]

By making the following substitutions;
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X =rcosO , y =rsind , [B.14.a]

Z =x + py = rpe'¥ | [B.14.6]
where,
p=axip ,
p? = (cos O +asin )2 + B%sin?0 [B.14.c]
tan vy = cos OB iinaesin 0 [B.14.4]
o, becomes
oy = A1Gy + AGp + A3Gyy + AG, . [B.15]
In the above
Gyr = (rpy)'Lcos (yyy) + 1sin(yyy)] | [B.16.a]
Gy, = (rpy)'lcos (ywy) + isin(yyy)l . [B.16.b]
As noted earlier, y always occurs in a complex conjugates pairs, that is,
By = aq + iBy, o= ap + iB, [B.17.a]
Mg = 04 — iBy , pg = ap — iBy . [B.17.]

Similar resuits can be obtained for the other stress components. Expansion of eq. B.12 leads

to,

2
o = k§1 Lag + aedg + (%2 — a%W gl [B.18]
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+ il + ay4dan + (@ — a2l .

However, since o, must be a real quantity and g, and g’y are unique functions of r and 0,

setting the imaginary part of ¢, {o zero leads to,
g4 = — @ . A4y T
that is A.,, = A,.Next the coefficients are redefined,
e = a + a4 = 23
- ay, = — 23} .

Cy+a = a%ta

It follows that the stresses can be written as,

2 .
o = E [ Cx Re (G"() + Cy+2 Im (le) ] ' = XyXy , [819]
k=1
with ¢, (k = 1,2,3,4) being real constants.

Complex Eigenvalue

As was previously stated, if A is complex it will occur in complex conjugate pairs, i.e.,

The stresses associated with Fi® (x,y) , for a pair of complex conjugate eigenvalue, will take

the following form;

4 4 _
o = § AkG|k+A § By Gik i = Xyxy . [B.20]

with A, and B, being arbitrary complex constants, A, = a, + ia’, and B, = b, +ib’,. The

function E,k associated with X is the conjugate of the function G,, = g, + ig’, associated
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with A . In addition, g, and g’, are unique functions of r and 6, as shown next. Considering o,

again for A and X in the most general form becomes,
o, = ¥ AZ + X Bz [B.21]
k=1 k=1
where for complex eigenvalues, using relations B.14.a and B.14.b,
Zk = (rp)Te Y®[cos n, + isinnJd ., [B.22.a]
ZF = (rp)"e"™®[cos v, + isinn,] [B.22.0]
where,
Mk = YV + @ In(rp)
My = YV — ¢ In(rpy)
Considering eqs. B.14 and B.17 and substituting eq. B.22 into eq. B.21, 6, may be written as,
Oy = Aify + Agfy + Agfy + Agfy + Asfs + Agfg + Arfy + Agfy , [B.23]

where, f, , i = 1,2,..,8 are complex functions. Next, it can be shown that f; is the conjugate

of f, (i.e., f, = f,) where,
f; = (rpy)’ e¥1®{cos [yyy + @ In(rpy] + isin [yy, + ¢ In(rpy]}

Similarly, f, = f,, f; = f,, and f, = f,. Since the numbering of the functions and coefficients is

arbitrary, eq. B.23 can be written in the form of eq. B.20, where,
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Similar resuits can be obtained for the other stress components. Expansion of eq. B.20 leads

to the following result;

4
o = X [+ bogk + ®% — a0gil

+ il@@% + bogx + (a — bogul . [B.24]

However, since o, must be a real quantity and g,, and g’, are unique functions of r and 6.

Setting the imaginary part of g, to zero leads to,
b’k = - a'k , bk = ax ,
i.e., B, = A,.Renaming the constants as,

Ck = a + bk = 2bk'

leads to the following eigenfunction expansion of stress,

4 4
o, = X Re(Gy)+ T cyim(Gy) ., . i = xyxy , [B.25]
k=1 k=1

where c, and c’, are two unknown real constants. it should be noted that the above repre-
sentation of stresses leads to the classical stress formulation arising from a complex stress

function. For example,

4 2
oy = 2Re[ X Ck—a——g—] , efc...
k=1 ay
with C, being an arbitrary complex constant.
Appendix B. The Eigenvalue Problem 159



Based on the above discussion and the one given in the previous section, the general form

of the stress functions F* (x,y) and ¥® (x,y) can be written.

Real Eigenvalue

For real n* eigenvalue, the two stress functions Fi* (x,y) and ¥® (x,y) are given by,

(o = 3 Cn
Fo ) 5 A+ DA, + 2)

(ReL}, cazins ]

+ im[ Cn(x+2) Zg"+2) ] } .

oo d -
@, = —"_. n + )
‘F( ! (va) n§1 (8" + 1) { Re [ dn1 235 ! ]

+ mld,z&*" 71y

with ¢, and d, being arbitrary real constants and ¢, (k = 1,2,34) andd,,, (k =

quantities of the normalized n* eigenvector (see section B.2).

Complex Eigenvalues

if the nt" eigenvalue is complex, the two stress functions are given by,

Zpn *2
"+ DA, + 2)

[ 4
Fo (xy) = §1 {c, Re [51 ¢

4 Z(xn +2)
+ ¢yim{ kz Cric K

=, (xn+1)(xn+2)]} ’

ilfn +2)

oo 2
\y(.) (X’Y) = n§1 { dn Re [k§1 d"k W
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[B.28]
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2 280 +1)

+ d,Im({ kz Aoy

) m]} : [B.29]

with ¢,,c’,,d, and d’, being arbitrary real constants and c,, (k = 1,2,3,4) and
d.. (k = 1,2) being known quantities of the normalized n* eigenvectors. With the functional
form for F® (x,y) and ¥ (x,y) known, the eigenfunction expansion for both stresses and dis-

placements can be determined.
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Appendix C. Finite-Element Formulation

C.1 PE2D Finite-Element Formulation

In this appendix the PE2D finite-element program is described in greater detail. This pro-
gram is based on the elasticity equations which govern an elastic body for which the stresses
do not vary along it’s generator {the z axis). Such a condition is referred to as the a general-

ized plane deformation.

The finite-element program is based on the displacement formulation approach and it is

derived from the total potential energy function, IT,
_ 1 =T — _ T
n, = — fu ex ox av fau tda [c1]

The first term corresponds to the body’s total strain energy, the second to the work done by
the external force, t. The work done by the body forces is neglected. The generalized plane

deformation finite-element model is based on the displacement field for homogeneous
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anisotropic body for whibh the stress do not vary with z for this situation. The displacement

functions u, v, and w have the following form:

B8,a
-—178 2 Byyz + Uxy) + @z — w3y + U, , [c.2.a]

B, a
v = --—22—3~?'-z2 + Byxz + V(XY) + @3X — ©Z + Vg , (cab]

w = (Byx + By + By) aiz + Wixy)

where B,, i = 1,2,3,4, are arbitrary constants of integration, o,, i = 1,2,3 are rigid body ro-
tations, and u,, v, and w, are rigid body translations. In addition, U(x,y), V(x,y) and W(x.y) are
unknown displacement functions which depend on x and y only. This displacement field can

be written in vectorial form as,

u=u + U, [c3]
where,
Uy = {Upfxy.2) i Velxy.2) i Wolxy.2)} .
UT = Uky)  VIxY) 0 W)
and,

B, a
UglXy,2) = - —12—:ﬁz2 - Byyz ,
B,a ‘
volxyz) = - —22—3322 + Byxz |,
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Wo(xy,2) = (Byx + By + Bj)agz

The terms associated with the rigid body rotation and translation are omitted. it may be shown

that the unknown constants B,, i = 1,2,3,4 , are related to the body’s kinematic end condi-
tions, i.e.,
€ K X
B, = 9 , B, = -z , = = X
3 a3 2 a3 B4 2

In the stiffened-skin structural context, e, and x, are the axial extension and curvature in the
Z direction, and x,, is the twist curvature about the z axis. The coefficient B, relates to the in-
plane twist about the y-axis and is of no consequence in the structure considered here and is

therefore set to zero. The strain vector, &, is given by,

& =E + %, ., [C4.a]
where,
6 o= {&; Ey s Bz Yyz i Yz Yxy} o [c.4.b]
ET={-‘;—:;%YV—;O;%—;%;%—+%XY-} , [c.4.c]
and,
?Z = {0;0; (e + K, ; - —%x; —K—é’g-y; 0} . [c.4.d]

Next, the laminate constitutive law may be written in a reduced form as,
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(W - 0 0 0 (
% Ex Bis Bi2 x
% - 5 Pra B O 0 O oy
= W N
Ex = <——-aay - Yy p = 0 0 By O O { Yy >, [cs]
_%\:(v - Y 0 0 0 Bg O e
au av
3y tae ) ] 0 0 0 0 Beg ] Yxy
where,
™ Be, + xy) ; &£ = 423 (e X, y)
X agg ' ° zY) &y ag, oo zY)
o] - K o _ _ sz
Yyz = Tx v Y T —2 y .
and,
3333 ..
By = ay an 0 M= 12456 .

Notice that ﬁ and ¢, are modified by condensing o, out (i.e., the reduced compliance form). In

inverted form eq. C.5 will be referred to by,
o, = [Ql% . (cs]

where, [Q] = [B]-"

Considering eqgs. C.1 and C.5 it may be conciuded that the problem associated with U(x,y)
and V(xy) is decoupled from the problem which involves W(x,y). In addition, since U, V, and
W are functions which depend on x and y alone, only a two-dimensional finite-element model
is required. Considering egs. C.3, C.5 and C.6 the total potential energy for a typical element

of thickness t® in the z direction becomes,
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2
e _ f° BT AR _ e BT t® (e + K, ¥)
My = - fu E'QE dA tjA.EQeodA+—2—jA.——35;—dA+
e - —
%?.h.s;QsodA - t°f, Ut as - e utas [c.7]

where A® is the element surface area in the x-y plane and S¢ is the part of the element
boundary on which external traction forces are acting. In the displacement formulation
finite-element program, the unknown displacement functions, U(x,y), V(xy), and W(xy) are

approximated using a Lagrangian interpolation functions,

Ulxy) = '>§.1 U yilxy) [c.8.a]
Vixy) = 'g vivilxy) [c.8.b]
Wixy) = é wyixy) [c.s.c]

where, u, v; and w; are the generalized nodal displacements and v, are the two-dimensional
Lagrangian interpolation function. The interpolation functions y, assume different forms, de-
pending on the type of element used. In the present investigation two types of element were
used; the 8-node rectangular and the 6-node triangular isoparametric elements. The interpo-

lation functions for these elements have the following form;

8-Node Isoparametric Element interpolation Functions

wEm = - +a-BHU-mE+n+Y [c9.]

vbm = FO+OI-mE--1 [C.o.]
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W3(§1 Tl)

va(€ M)

vs(&, M)

L))

w7(€s T'l)

\Va(gy "1)

W1(g! T'I)

va(E m)

val&. )

\V4(§v 11)

vs(&. M)

\VS(E;- T'l)

= FU+YI+mE+ -

1=+ -8-1)

FNEN

L TP
= 1u-0-n
= ta-w+n
= -8+

— 1 4 2y
= =m0 -9

6-Node Isoparametric Element Interpolation Functions

= (1-&§-m(1-285—-2n)
= §(2€—1)

= n@2n-1)

= 4E(1-&~-)

= 487

= 4n(1-&-n)

[c.9.c]

[c.a.d]

[coe]

[c.of]

[ca.g]

[c.a.n]

{c.10.a]

[c.10.b]

[c.10.c]

[c.10.d]

[c.10.e]

[c.10.f]

where the elements nodal numbering and natural coordinates system are shown in Figure C.1.

Substitution of eqs. C.8 into eq. C.4.b leads to
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Bq |, [c.11]

ml
l

where,

q = [y vy wl , i=12..n

are the nodal displacements. The matrix B is given by,

B = [B B, .. Bl , [c.12]
where,
i .
M5,
ox
0o M,
oy P
B=| 0 o0 % i=12..0
0 o0 ———a“)’(‘
oy, Oy 0
dy  Ox
L .

Finally, substituting eqs. C.2, C.8, and C.9 into eq. C.7 and minimizing the total potential energy

for a typical element,

e
oms
6q,

= [t [.B8"aBdA]q - 1 [.B"QF, dA
- [ ¥tds =0 . [c.13]
[+ 4

Next if only the solution for U and V are considered, the above integral equations may be cast

into a set of simultaneous equations in a matrix form

K1 K2 gl
[ 2 k22] q = {Fz}. [C.14.a]
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or in the more common form,

[klg = F . [c.14.b]

The components of the stiffness matrix, [k] and force vector, F are given as follows:

oy, Ov dy
k' = 1 e [ 11—5)%6—; + Qg al ~Jdxdy [C.15.a]
dy, Ov dy, Ov
kf =K' = . [Q,—=- ayj + Qg a\zl x‘]dxdy . [C.15.b]
~ oy, 0y, dy, v
22 Vi “Yj Yi i
" = + ————
kij j‘ [ Qgg—— vl Qy, % ay]dxdy . [c.15.c]
1 (6o + K;¥) oy
F| = ta jA. ‘—o-?aa—z-— [Qﬂ 313 + Q12 823]—3% dx dy [C15d]
+ ° js; vt ds
2 (e + Xz¥) .
FI = 8 J.A° '—0—3;"}—— [Q12 a3 + Qo 823] y dx dy [C.15.e]
+ t° js. wityds ., ij=12..n

Using the interpolation functions, egs. C.9 and C.10, the elements stiffness matrices and force
vectors in eqs. C.15.a through C.15.e can be evaluated numerically. Once [k] and F are known

the solution for q can be obtained.
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C.2 EAL Finite-Element Program

The EAL finite-element program is based on hybrid element formulation. In the displacement
formuiation finite-element approach, the element stiffness matrices are derived using the
principle of minimum potential energy. Whereas, in the hybrid finite-element formulation the

element stiffness matrix are derived using the complementary energy principle given by,
M, = +f,37c3av - {,u"tda [c.16]
¢ 2 v A J

where the work done by the body forces were neglected. In eq. C.16, C is the material stiffness
matrix, u is the displacement vector, and t is the surface traction vector. In the hybrid element

formulation the stresses are written in terms of generalized stress coefficients,
G =Pb |, [c.17]
where,
b" = [by by .. bl ,

and P is a matrix which depends on position and is chosen in such a way so that ¢ satisfies
the stress equilibrium equations identically. Using eq. C.17 the body internal strain energy

becomes,
= 4 7 T
® = b {[PCPdV}b . [c.18]

Next the displacements are written in terms of the element generalized nodal displacements,

u =Lq , [c.19]
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where L is a function of position and insures inter-element compatibility. In addition, the sur-

face tractions may be related to the body stresses by,

t = Rb , [c.20]

where R is a function of the boundary position. Upon substitution of egs. C.18 through C.20 into

eq. C.16 the total complementary energy becomes,

n, = %bTHb - b'Tq ., [c21]
where,
H = [P CPdV ,

T = 4R LdA

The next step involves the minimization of II. with respect to the generalized stress coeffi-

cients, b,

leading to a relation between b and q,
b = H 'Tq
From which the element stiffness matrix is calculated,
[k] = T'H'T
The solution to the finite-element problem is obtained in the standard form, i.e.,

[Klq = F ,
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except that [k] is replaced by [k.]. If [k] is the stiffness matrix of perfectly conforming ele-
ments, than [k.] approaches [k] from the soft side. Whereas, [k], as derived from the dis-

ptacement formulation finite-element, approaches [k] from the stiff side.

EAL - E43 and E33 Elements

The E43 and E33 are the 4-node rectangular and 3-node triangular plate elements. Each
node of these elements has 5 degrees of freedom (dof) consisting of two rotation and three
displacement components. The element formulation is based on the assumed stress resultant

polynomials which satisfy the following plate equilibrium equations;

+ —L + =
ox oy q 0
M, My Q
ox dy x
oM, oM,
—_ + =
ox dy Q .
2 2
M, TMy  FMy tq =0
%2 oxay 6y2 '

where q is applied uniform transverse load. All symbol and coordinate nonfenclature are
those common to the theory of plates. The stress resultant polynomials which satisfy the

above equations have the following form;
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E33 Element

( o <
x by by by
y bs bs by 1
{My =] bg 0 0 X
Qx bg 0 0 Yy
Qy ) b10 0 0
E44 Element
NX = b3 + b4y y NV = b2 + bsx , ny b1
[ 1
My bs byy by bys
y by bio P12 beg
My p = bg by byz by
Qx byy =byg —byz bys O
Qy b1 = big big —Dbyy O]
"
where,
p
b =
17 >

The plate constitutive relations for composite materials are given by,
N _ A'B e }
N = |--r-- -4
M B'D K f
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EAL - S61 and S81 Solid Elements

The S61 and S81 are 6-nodes, pentahedron, and 8-nodes, hexahedron, solid elements. Each

node of these elements has 3 degrees of freedom, u, v, and w. For these elements the as-

sumed stress polynomials have the following form;

g, = b, +
o, = b, +
g, = b, +
1, = by +
T, = bg +
Ty = by +

b,y + bgz + bgyz ,
byx + byz + byxz |
byx + b,y + byxy
b.Xx ,
by .

b,z ,

These set of assumed stress polynomials satisfy the stress equilibrium equations three-

dimensional elastic body. The element constitutive law assumes the most general anisotropic

form,

2 = [813, .

where [S]is a fully populated matrix.
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Appendix D. Material Properties and Eigenvalue

Data

The material properties used in the current investigation are representative of materials
used by the aircraft industry. Though not representing any particular material, they are used

here to demonstrate the analytical model. The lamina principal material properties are,

E, = E, = 21 Msi , E; = 200 Msi ,
G31 = G32 = G12 = 0.85 Msi N
V34 = Vag = V4 = 0.21 ,
with the 1, 2, and 3 being the transverse, thickness, and fiber-direction respectively. The inte-
grated laminate material properties are obtained by smearing the individual lamina properties
through the thickness of the laminate. Table D.1 lists the engineering constants for the differ-

ent laminates used in the investigation. In the study, two sets of skin-stiffener material system

combinations were used. In both of these combinations the skin laminate was always main-
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tained at ( £ 45/90,),. The stiffener flange laminate layup varied. The following four stiffener
flange laminates were used: 1. ( + 45/0/90), ; 2. ( & 45/0/90,/0/ % 45), ; 3. { & 45/0,), ; and 4.
( + 45/0,/ £ 45),. In the stiffener parametric study context, laminate 1 is the baseline stiffener
flange configuration, laminate 2 is the "thick flange”, laminate 3 is the "soft flange”, and lami-
nate 4 is the “thick & soft flange” configuration. From Table D.1 it is clear that the combination
of the skin laminate with either the first or the second flange laminate {i.e., laminate 1 or 2)
will produce the same set of eigenvalues for a given flange termination angle. This material
system combination is referred to as combination no. 1. The same is true for skin-stiffener
material combination which use flange laminates 3 or 4. This material syétem combination is
referred to as combination no. 2. The eigenvalues for these two material system combinations

and for three flange termination angles are given in Table D.2 and D.3, respectively.

Finally, the adhesive layer material properties used to produce the results in section 2.6

were taken from Delale and Egdogan® and are listed below;

E = 0445 Msi ,

@®
]

-0.165 Msi

1 Delale, F., Erdogan, F., and Aydinoglu, M.N., “ Stresses in adhesively bonded joints: A closed-form
solution,” J. of Composite Materials , 15, (1981} p. 249.
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